首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   5篇
  国内免费   1篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   6篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   8篇
  2007年   6篇
  2006年   7篇
  2005年   10篇
  2004年   8篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
31.
The ability of vector-borne diseases to persist and spread is closely linked to the ecological characteristics of the vector species they use. Yet there have been no investigations of how species used as vectors by pathogens such as the plague bacterium differ from closely related species that are not used as vectors. The plague bacterium uses mammals as reservoir hosts and fleas as vectors. The ability of different fleas to serve as vectors is assumed to depend on how likely they are to experience gut blockage following bacterial multiplication; the blockage causes fleas to regurgitate blood into a wound and thus inject bacteria into new hosts. Beyond these physiological differences, it is unclear whether there exist fundamental ecological differences between fleas that are effective vectors and those that are not. Here, using a comparative analysis, we identify clear associations between the ability of flea species to transmit plague and their ecological characteristics. First, there is a positive relationship between the abundance of flea species on their hosts and their potential as vectors. Second, although the number of host species exploited by a flea is not associated with its potential as a vector, there is a negative relationship between the ability of fleas to transmit plague and the taxonomic diversity of their host spectrum. This suggests a correlation between some ecological characteristics of fleas and their ability to develop the plague blockage. The plague pathogen thus uses mainly abundant fleas specialized on a narrow taxonomic range of mammals, features that should maximize the persistence of the disease in the face of high flea mortality, and its transmission to suitable hosts only. This previously unrecognized pattern of vector use is of importance for the persistence and transmission of the disease.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   
32.
This study set out to determine whether the sex ratio of fleas collected from host bodies is a reliable indicator of sex ratio in the entire flea population. To answer this question, previously published data on 18 flea species was used and it was tested to see whether a correlation exists between the sex ratio of fleas collected from host bodies and the sex ratio of fleas collected from host burrows. Across species, the female:male ratio of fleas on hosts correlated strongly with the female:male ratio of fleas in their burrows, with the slope of the regression overlapping 1. Controlling for flea phylogeny by independent contrasts produced similar results. It was also ascertained whether a host individual is a proportional random sampler of male and female fleas and whether the sex ratio in flea infrapopulations depends on the size of infrapopulations and on the gender and age of a host. Using field data, the sex ratio in infrapopulations of 7 flea species parasitic on 4 rodent species was analysed. Populations of 3 species (Nosopsyllus iranus, Parapulex chephrenis and Xenopsylla conformis) were significantly female-biased, whereas male bias was found in 1 species (Synosternus cleopatrae). In general, the sex ratio of fleas collected from an individual rodent did not differ significantly from the sex ratio in the entire flea population. Neither host gender, and age nor number of fleas co-occurring on a host affected (a) the sex ratio in flea infrapopulations and (b) the probability of an infrapopulation to be either female- or male-biased.  相似文献   
33.
The new recent genus and species of three‐toed jerboas (Rodentia: Dipodinae), from southern Ningxia, China, is described. This form demonstrated a unique mixture of external, cranial, and dental characters that individually are typical for one or another of all known genera of Dipodinae. Based on morphological characters, it is recovered as the part of Dipodinae tree, distinct from all other members due to its unique combination of morphological characters, and appears to be a nearly ideal living ancestor of all other dipodines. In contrast to morphology, the molecular data indicate a relatively young age for this lineage and consistently place it as the sister group to Stylodipus. The results of the molecular clock analysis suggest that the separation of the two lineages dates back to the Early Pliocene or the Pliocene/Miocene boundary. The estimated geographic range of the new form seems extremely small. The conservational status of the new species remains to be determined; however, the available information suggests that it requires protection.  相似文献   
34.
1. This study tested the relationships between the probability of pairwise species co-occurrence and pairwise dissimilarity in their traits in infracommunities (across assemblages harboured by conspecific individual hosts within a locality), component communities (across assemblages harboured by host species within a locality), and compound communities (across assemblages in different localities) of fleas and gamasid mites parasitic on small mammals in Western Siberia. 2. A significant, albeit weak, tendency was found for flea communities harboured by conspecific host individuals, host species, and host communities to be composed of similar species. No relationship between the probability of co-occurrence and trait dissimilarity was detected for mite communities at any hierarchical scale. 3. For fleas, this study explained the link between positive co-occurrence and trait dissimilarity by a process resembling environmental filtering realised mainly via host traits for infracommunities and component communities and via off-host environment for compound communities, thus suggesting that the identical shape of the relationships between co-occurrence and trait dissimilarity at different scales was driven by different mechanisms. 4. The explanation of the lack of this relationship in mites included: (i) the paucity of the subset of mite traits used in this study and its potential inadequacy for the question at hand; and (ii) possible masking of the effect induced by one trait on co-occurrence owing to the lack of this effect induced by another trait(s). 5. Caution is recommended regarding the compilation of a dataset involving multiple traits, its analysis, and the interpretation of the results.  相似文献   
35.
1. The present study investigated whether different components (species replacement and species gains/losses) of compositional and phylogenetic beta diversity of insect ectoparasites responded similarly to environmental and host-associated gradients using a large dataset on distribution of fleas and their rodent hosts in Mongolia. 2. Generalised dissimilarity modelling was applied to investigate whether environmental variables or host dissimilarity was the best predictor of species/lineage replacement and species/lineage gains/losses (= richness difference) components of compositional and phylogenetic flea beta diversity. 3. The total compositional beta diversity of fleas was influenced mainly by the gradient in air temperature and, to a lesser degree, by total host beta diversity, with the former effect being associated with the richness difference component and the latter effect being associated with species replacement component. The total phylogenetic beta diversity of fleas was best explained by the total phylogenetic beta diversity of hosts, with this effect being mainly associated with the lineage replacement component, whereas the lineage richness difference component responded mainly to the temperature gradient. 4. The results of the present indicate that not only multiple beta diversity facets are driven by different factors, but also different components of the same beta diversity facet respond to different environmental (for parasites, including host-associated) gradients. These patterns were masked when only total beta diversity was analysed. 5. This emphasizes the importance of considering the components of insect beta diversity separately. Ignoring the separate components of beta diversity can lead to potentially erroneous inferences about the relative contribution of abiotic and biotic effects on beta diversity.  相似文献   
36.
37.
Changes in the structure of tenebrionid beetle, lizard and rodent communities along the aridity gradient that determines the position of a phytogeographic province boundary were studied to test: (1) whether there are two different species assemblages on either side of the boundary (2) the extent of their differentiation and (3) if they are composed of different or the same faunal elements. Several ordination methods were tested for their capacity to reflect community structure, and discriminant function analysis was selected as the primary method of ordination. Each of the ordination axes reflected a complex environmental gradient. The latter was different for each taxon. The gradient of productivity cross-cuts ecological space for each animal group in an individual manner. Revealed spatial assemblages of species were related to the level of productivity. There was one assemblage of species at high productivity and one or two assemblages occurred at low productivity in each taxon. The α–diversity curve of rodents changed weakly along the productivity gradient, whereas those of lizard and beetle communities were distinctly unimodal and had maxima near the middle of the gradient. β–diversity curves of rodents had a concave shape, but those of lizard and beetle communities increased from low productivity values to the middle of the gradient and after that weakly declined to the upper (productive) end of the gradient. Seven types of ranges or areographic groups of species were distinguished. Each species assemblage was composed of different faunal elements. Comparison of the results of ecological and areographic analyses demonstrated that two assemblages of rodents and lizards represent different guilds within the same community rather than different communities. The phytogeographic border for these taxa is an ecological rather than a geographical boundary. The difference between the two tenebrionid assemblages appears to be zoogeographical rather than ecological, and coincides with the phytogeographic boundary.  相似文献   
38.
There is substantial variability among populations of the same species in basic features such as abundance or niche breadth, and it is unclear to what extent these are true species traits as opposed to the product of local environmental factors. In parasites, abundance and niche breadth, i.e. host specificity, show repeatability among different populations of the same species, but may also be influenced by external forces, depending on the parasite taxa studied. We tested whether the abundance and host specificity of gamasid mites parasitic on small mammals from 26 different geographic regions of the Palaearctic, are species-specific or instead determined by host identity and/or parameters of the biotic and abiotic environment. Values of abundance and host specificity (measured as the number of host species used) were significantly more similar among populations of the same mite species than among different mite species; despite also showing consistency within particular host species or regions independently of mite species identity, both abundance and the number of host species used appear to be true mite species traits. In contrast, the taxonomic distinctness of host species used by a mite showed little repeatability among populations of the same mite species, and appears mostly determined by the local pool of available host species. Within given mite species, all three variables (abundance, number of host species used, and their taxonomic distinctness) covaried to some extent with one or more environmental factors (e.g., nature of the local host assemblage, temperature, precipitation) across geographical regions, but there was no universal pattern among results from different mite species. These results are similar to those obtained earlier on other taxa, e.g. fleas, and suggest that there are general laws acting on spatial patterns of parasite abundance and host specificity.  相似文献   
39.
Population density is a fundamental property of a species and yet it varies among populations of the same species. The variation comes from the interplay between intrinsic features of a species that tend to produce repeatable density values across all populations of the same species and extrinsic environmental factors that differ among localities and thus tend to produce spatial variation in density. Is inter-population variation in density too large for density to be considered a true species character? We addressed this question using data on abundance (number of parasites per individual host, i.e. equivalent to density) of fleas ectoparasitic on small mammals. The data included samples of 548 flea populations, representing 145 flea species and obtained from 48 different geographical regions. Abundances of the same flea species on the same host species, but in different regions, were more similar to each other than expected by chance, and varied significantly among flea species, with 46% of the variation among samples accounted by differences between flea species. Thus, estimates of abundance are repeatable within the same flea species. The same repeatability was also observed, but to a lesser extent, across flea genera, tribes and subfamilies. Independently of the identity of the flea species, abundance values recorded on the same host species, or in the same geographical region, also showed significant statistical repeatability, though not nearly as strong as that associated with abundance values from the same flea species. There were also no strong indications that regional differences in abiotic variables were an important determinant of variation in abundance of a given flea species on a given host species. Abundance thus appears to be a true species trait in fleas, although it varies somewhat within bounds set by species-specific life history traits.  相似文献   
40.
Using Atlantic salmon (Salmo salar) as a model system, we investigated whether 18 microsatellites tightly linked to immune‐relevant genes have experienced different selection pressures than 76 loci with no obvious association with immune function. Immune‐relevant loci were identified as outliers by two outlier tests significantly more often than nonimmune linked loci (22% vs. 1.6%). In addition, the allele frequencies of immune relevant markers were more often correlated with latitude and temperature. Combined, these results support the hypothesis that immune‐relevant loci more frequently exhibit footprints of selection than other loci. They also indicate that the correlation between immune‐relevant loci and latitude may be due to temperature‐induced differences in pathogen‐driven selection or some other environmental factor correlated with latitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号