首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   5篇
  国内免费   1篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   6篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   8篇
  2007年   6篇
  2006年   7篇
  2005年   10篇
  2004年   8篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
11.
Animal species with larger local populations tend to be widespread across many localities, whereas species with smaller local populations occur in fewer localities. This pattern is well documented for free-living species and can be explained by the resource breadth hypothesis: the attributes that enable a species to exploit a diversity of resources allow it to attain a broad distribution and high local density. In contrast, for parasitic organisms, the trade-off hypothesis predicts that parasites exploiting many host species will achieve lower mean abundance on those hosts than more host-specific parasites because of the costs of adaptations against multiple defense systems. We test these alternative hypotheses with data on host specificity and abundance of fleas parasitic on small mammals from 20 different regions. Our analyses controlled for phylogenetic influences, differences in host body surface area, and sampling effort. In most regions, we found significant positive relationships between flea abundance and either the number of host species they exploited or the average taxonomic distance among those host species. This was true whether we used mean flea abundance or the maximum abundance they achieved on their optimal host. Although fleas tended to exploit more host species in regions with either larger number of available hosts or more taxonomically diverse host faunas, differences in host faunas between regions had no clear effect on the abundance-host specificity relationship. Overall, the results support the resource breadth hypothesis: fleas exploiting many host species or taxonomically unrelated hosts achieve higher abundance than specialist fleas. We conclude that generalist parasites achieve higher abundance because of a combination of resource availability and stability.  相似文献   
12.
Evolutionary trends in the evolution of host specificity have been the focus of much discussion but little rigorous empirical testing. On the one hand, specialization is often presumed to lead irreversibly into evolutionary dead ends and little diversification; this would mean that generalists might evolve into specialists, but not vice versa. On the other hand, low host specificity may limit the risk of extinction and provide more immediate fitness benefits to parasites, such that selection may favour evolution toward a generalist strategy. Here, we test for directionality in the evolution of host specificity using a large data set and phylogenetic information on 297 species of fleas parasitic on small mammals. The analyses determined whether host specificity, measured both as the number of host species exploited and their taxonomic diversity, was related to clade rank of the flea species, or the number of branching events between an extant species and the root of the phylogenetic tree (i.e., the total path length from the root of the tree to the species). Based on regression analyses, we found positive relationships between the number of host species used and clade rank across all 297 species, as well as within one (Hystrichopsyllidae) of four large families and one of seven large genera investigated separately; in addition, we found a positive relationship between the taxonomic diversity of host species used and clade rank in another of the seven genera. These results suggest a slight evolutionary trend of decreasing host specificity. Using a much more conservative likelihood ratio test, however, a random walk, or null model, of evolution could not be discarded in favour of the directional trends in all cases mentioned above. Still, these results suggest that host specificity may have tended to decrease in many flea lineages, a process that could have been driven by the benefits of exploiting a wide range of host species.  相似文献   
13.
We tested the hypothesis that compositional and/or phylogenetic dissimilarity of host assemblages affect compositional and/or phylogenetic dissimilarity of parasite assemblages, to different extents depending on scale, using regional surveys of fleas parasitic on small mammals from 4 biogeographical realms. Using phylogenetic community dissimilarity metric, we calculated the compositional and phylogenetic dissimilarity components between all pairs of host and parasite communities within realms and hemispheres. We then quantified the effect of compositional or phylogenetic dissimilarity in host regional assemblages, and geographical distance between assemblages, on the compositional or phylogenetic dissimilarity of flea regional assemblages within a realm, respectively. The compositional dissimilarity in host assemblages strongly affected compositional dissimilarity in flea assemblages within all realms and within both hemispheres. However, the effect of phylogenetic dissimilarity of host assemblages on that of flea assemblages was mostly confined to the Neotropics and Nearctic, but was detected in both the Old and New World at the higher scale, possibly because of phylogenetic heterogeneity in flea and host faunas between realms. The clearer effect of the compositional rather than the phylogenetic component of host community dissimilarity on flea community dissimilarity suggests important roles for host switching and ecological fitting during the assembly history of flea communities.  相似文献   
14.
Abstract.  1. The fleas Xenopsylla conformis and Xenopsylla ramesis exploit the same rodent host, Meriones crassus , and replace each other between two different habitats situated at the opposite sides of a steep precipitation gradient. It was hypothesised that the reason for this paratopic distribution is competition between larvae of the two species for food resources.
2. This hypothesis was tested by studying the performance of larvae of the two species in terms of their developmental success in mixed-species and single-species treatments under different air temperatures, relative humidities, substrate textures, and food abundance.
3. The number of individuals of X. conformis that survived until emergence depended significantly on the presence of competing species, being, in general, lower in mixed-species compared with single-species treatments. The decrease in developmental success of X. conformis in mixed-species treatments was found mainly during food shortage. In contrast, presence of the competitor did not affect the number of X. ramesis that survived until emergence. No effect of the presence of the competitor on duration of development or sex ratio was found in either species.
4. The results of this study, together with the results of our previous studies, provide an explanation for the paratopic distribution of X. conformis and X. ramesis that exploit the same host species.  相似文献   
15.
Aim Spatial variation in the diversity of fleas parasitic on small mammals was examined to answer three questions. (1) Is the diversity of flea assemblages repeatable among populations of the same host species? (2) Does similarity in the composition of flea assemblages among populations of the same host species decay with geographical distance, with decreasing similarity in the composition of local host faunas, or with both? (3) Does the diversity of flea assemblages correlate with climatic variables? Location The study used previously published data on 69 species of small mammals and their fleas from 24 different regions of the Holarctic. Methods The diversity of flea assemblages was measured as both species richness and the average taxonomic distinctness of their component species. Similarity between flea assemblages was measured using both the Jaccard and Morisita–Horn indices, whereas similarity in the composition of host faunas between regions (host ‘faunal’ distance) was quantified using the Jaccard index. Where appropriate, a correction was made for the potentially confounding influence of phylogeny using the independent contrasts method. Results Flea species richness varied less within than among host species, and is thus a repeatable host species character; the same was not true of the taxonomic distinctness of flea assemblages. In almost all host species found in at least five regions, similarity in flea assemblages decreased with increases in either or both geographical and faunal distance. In most host species, the diversity of flea assemblages correlated with one or more climatic variable, in particular mean winter temperature. Main conclusions Spatial variation in flea diversity among populations of the same mammal species is constrained by the fact that it appears to be a species character, but is also driven by local climatic conditions. The results highlight how ecological processes interact with co‐evolutionary history to determine local parasite biodiversity.  相似文献   
16.
Host specificity and geographic range in haematophagous ectoparasites   总被引:1,自引:0,他引:1  
A negative interspecific correlation between the degree of habitat specialization and the size of a species' geographic range has been documented for several free living groups of organisms, providing support for the niche breadth hypothesis. In contrast, practically nothing is known about the geographic range sizes of parasitic organisms and their determinants. In the context of the niche breadth hypothesis, parasites represent ideal study systems, because of the well documented variation in host specificity among parasite species. Here, we investigated the relationship between host specificity (a measure of niche breadth) and geographic range size among flea species parasitic on small mammals, using data from seven distinct geographical regions. Two measures of host specificity were used: the number of host species used by a flea species, and a measure of the average taxonomic distance between the host species used by a flea; the latter index provides an evolutionary perspective on host specificity. After correcting for phylogenetic influences, and using either of our two measures of host specificity, the degree of host specificity of fleas was negatively correlated with the size of their geographic range in all seven regions studied here, with only one minor exception. Overall, these results provide strong support for the niche breadth hypothesis, although other explanations cannot be ruled out.  相似文献   
17.
The evolution of molar teeth from low-crowned (brachyodont) to high-crowned (hypsodont) has traditionally been recognized as a response to increasing tooth wear due to endogenous (e.g., fiber, silica) and/ or exogenous (e.g., dust, grit) properties of ingested food. Recent work indicates that the mean hypsodonty level of large herbivorous land mammalian communities is a strong predictor of precipitation in their habitats. For small mammals, however, the research is still in an early stage. This study performed comparative studies of hypsodonty on 26 extant dipodid species with and without consideration of phylogeny. The results confirm the role of diet in shaping the cheek tooth crown height in Dipodidae. The significant relationship of investigated environmental variables with hypsodonty may be partly due to phylogenetic effects. Nonetheless, the mean hypsodonty of dipodid communities has significant relationship with regional climatic variables. Hence, the hypsodonty of dipodids also has great potential to be a regional climate proxy.  相似文献   
18.
We investigated the associations between ecological (density, shelter structure), morphological (body mass, hair morphology) and physiological traits (basal metabolic rate) of small mammals and ecological (seasonality of reproduction, microhabitat preferences, abundance, host specificity) and morphological (presence and number of combs) traits of their flea parasites that shape host selection processes by fleas. We adapted the extended version of the three‐table ordination and linked species composition of flea assemblages of host species with traits and phylogenies of both hosts and fleas. Fleas with similar trait values, independent of phylogenetic affinities, were clustered on the same host species. Fleas possessing certain traits selected hosts possessing certain traits. Fleas belonging to the same phylogenetic lineage were found on the same host more often than expected by chance. Certain phylogenetic lineages of hosts harbored certain phylogenetic lineages of fleas. The process of host selection by fleas appeared to be determined by reciprocal relationships between host and flea traits, as well as between host and flea phylogenies. We concluded that the connection between host and flea phylogenies, coupled with the connection between host and flea traits, suggests that the species compositions of the host spectra of fleas were driven by the interaction between historical processes and traits.  相似文献   
19.
Aggregation and species coexistence in fleas parasitic on small mammals   总被引:2,自引:0,他引:2  
The aggregation model of coexistence states that species coexistence is facilitated if interspecific aggregation is reduced relative to intraspecific aggregation. We investigated the relationship between intraspecific and interspecific aggregation in 17 component communities (the flea assemblage of a host population) of fleas parasitic on small mammals and hypothesized that interspecific interactions should be reduced relative to intraspecific interactions, facilitating species coexistence. We predicted that the reduction of the level of interspecific aggregation in relation to the level of intraspecific aggregation would be positively correlated with total flea abundance and species richness of flea assemblages. We also expected that the higher degree of facilitation of flea coexistence would be affected by host parameters such as body mass, basal metabolic rate (BMR) and depth and complexity of burrows. Results of this study supported the aggregation model of coexistence and demonstrated that, in general, a) conspecific fleas were aggregated across their hosts; b) flea assemblages were not dominated by negative interspecific interactions; and c) the level of interspecific aggregation in flea assemblages was reduced in relation to the level of intraspecific aggregation. Intraspecific aggregation tended to be correlated positively to body mass, burrow complexity and mass-independent BMR of a host. Positive interspecific associations of fleas tended to occur more frequently in species-rich flea assemblages and/or in larger hosts possessing deep complex burrows. Intraspecific aggregation increased relative to interspecific aggregation when species richness of flea infracommunities (the flea assemblage of a host individual) and component communities increased. We conclude that the pattern of flea coexistence is related both to the structure of flea communities and affinities of host species.  相似文献   
20.
Fertilization is of central importance in the determination of reproductive success for both males and females. In species where males have the chance to mate repeatedly within a short period of time, sperm stocks may become depleted and males may have to carefully economize on their sperm reserves. Also, intensive intrasexual competition for females and repeated matings may lead to exhaustion on the behavioural level. To determine whether the reproductive potential of males is limited and if such a limitation is due to behavioural exhaustion or sperm depletion, we experimentally investigated changes in sperm stores, sperm expenditure, fertilization success, and sexual motivation over three repeated matings in the common toad, Bufo bufo , where the breeding season is short and sequential polygyny occurs. At the end of the breeding season, the number of sperm stored in the testes of males mated repeatedly was close to 50% lower than in testes of unmated males. Ejaculate size, which was estimated by applying a novel method allowing direct quantification, decreased by 88% from first to third matings. We also observed a drop in fertilization success from the first two to third matings by 65%, which was largest in males that had started the reproductive season in bad body condition. Some of these males also showed a decreased interest in females in the third mating round. Our results suggest that sperm depletion and loss of sexual motivation may together set a limit to the reproductive potential of common toad males. The present study draws attention to a limitation in reproductive potential, which may occur more often than currently anticipated and has the potential to strongly influence several aspects of reproductive behaviour.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 361–371.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号