首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6694篇
  免费   580篇
  国内免费   6篇
  7280篇
  2023年   19篇
  2022年   102篇
  2021年   165篇
  2020年   85篇
  2019年   95篇
  2018年   160篇
  2017年   125篇
  2016年   216篇
  2015年   360篇
  2014年   408篇
  2013年   466篇
  2012年   586篇
  2011年   525篇
  2010年   318篇
  2009年   249篇
  2008年   402篇
  2007年   385篇
  2006年   315篇
  2005年   313篇
  2004年   304篇
  2003年   211篇
  2002年   221篇
  2001年   208篇
  2000年   144篇
  1999年   113篇
  1998年   52篇
  1997年   35篇
  1996年   45篇
  1995年   33篇
  1994年   30篇
  1993年   23篇
  1992年   56篇
  1991年   36篇
  1990年   39篇
  1989年   34篇
  1988年   31篇
  1987年   37篇
  1986年   24篇
  1985年   24篇
  1984年   19篇
  1983年   17篇
  1982年   20篇
  1981年   22篇
  1980年   16篇
  1979年   21篇
  1978年   20篇
  1977年   22篇
  1976年   20篇
  1974年   17篇
  1969年   13篇
排序方式: 共有7280条查询结果,搜索用时 0 毫秒
121.
122.
Nanoporous network polymer nanocomposites with tunable pore size for size‐dependent selective ion transport are successfully prepared via the surface‐induced cross‐linking polymerization of methyl methacrylate (MMA) and 1,6‐hexanediol diacrylate (HDDA) on the surfaces of nanocrystalline TiO2 particles. The morphologies of the porous network polymer layer and nanopores were investigated by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE‐SEM), and Brunauer–Emmett–Teller (BET) experiments. The porous layer size‐selectively screened the ions that contacted the nanocrystalline TiO2 particles, as demonstrated by ion conductivity measurements, electrochemical impedance spectroscopy (EIS), and transient absorption spectroscopy (TAS).  相似文献   
123.
The limited availability of human vascular endothelial cells (ECs) hampers research into EC function whilst the lack of precisely defined culture conditions for this cell type presents problems for addressing basic questions surrounding EC physiology. We aimed to generate endothelial progenitors from human pluripotent stem cells to facilitate the study of human EC physiology, using a defined serum-free protocol. Human embryonic stem cells (hESC-ECs) differentiated under serum-free conditions generated CD34+KDR+ endothelial progenitor cells after 6 days that could be further expanded in the presence of vascular endothelial growth factor (VEGF). The resultant EC population expressed CD31 and TIE2/TEK, took up acetylated low-density lipoprotein (LDL) and up-regulated expression of ICAM-1, PAI-1 and ET-1 following treatment with TNFα. Immunofluorescence studies indicated that a key mediator of vascular tone, endothelial nitric oxide synthase (eNOS), was localised to a perinuclear compartment of hESC-ECs, in contrast with the pan-cellular distribution of this enzyme within human umbilical vein ECs (HUVECs). Further investigation revealed that that the serum-associated lipids, lysophosphatidic acid (LPA) and platelet activating factor (PAF), were the key molecules that affected eNOS localisation in hESC-ECs cultures. These studies illustrate the feasibility of EC generation from hESCs and the utility of these cells for investigating environmental cues that impact on EC phenotype. We have demonstrated a hitherto unrecognized role for LPA and PAF in the regulation of eNOS subcellular localization.  相似文献   
124.
During the last decade, an increasing number of papers have described the use of various genera of bacteria, including E. coli and S. typhimurium, in the treatment of cancer. This is primarily due to the facts that not only are these bacteria capable of accumulating in the tumor mass, but they can also be engineered to deliver specific therapeutic proteins directly to the tumor site. However, a major obstacle exists in that bacteria because the plasmid carrying the therapeutic gene is not needed for bacterial survival, these plasmids are often lost from the bacteria. Here, we report the development of a balanced-lethal host-vector system based on deletion of the glmS gene in E. coli and S. typhimurium. This system takes advantage of the phenotype of the GlmS mutant, which undergoes lysis in animal systems that lack the nutrients required for proliferation of the mutant bacteria, D-glucosamine (GlcN) or N-acetyl-D-glucosamine (GlcNAc), components necessary for peptidoglycan synthesis. We demonstrate that plasmids carrying a glmS gene (GlmS+p) complemented the phenotype of the GlmS mutant, and that GlmS+p was maintained faithfully both in vitro and in an animal system in the absence of selection pressure. This was further verified by bioluminescent signals from GlmS +pLux carried in bacteria that accumulated in grafted tumor tissue in a mouse model. The signal was up to several hundred-fold stronger than that from the control plasmid, pLux, due to faithful maintenance of the plasmid. We believe this system will allow to package a therapeutic gene onto an expression plasmid for bacterial delivery to the tumor site without subsequent loss of plasmid expression as well as to quantify bioluminescent bacteria using in vivo imaging by providing a direct correlation between photon flux and bacterial number.  相似文献   
125.
Epiblast stem cells (EpiSCs) and embryonic stem cells (ESCs) differ in their in vivo differentiation potential. While ESCs form teratomas and efficiently contribute to the development of chimeras, EpiSCs form teratomas but very rarely chimeras. In contrast to their differentiation potential, the reprogramming potential of EpiSCs has not yet been investigated. Here we demonstrate that the epiblast-derived pluripotent stem cells EpiSCs and P19 embryonal carcinoma cells (ECCs) exhibit a lower reprogramming potential than ESCs and F9 ECCs. In addition, we show that the low reprogramming ability is due to the lower levels of Sox2 in epiblast-derived stem cells. Consistent with this observation, overexpression of Sox2 enhances reprogramming efficiency. In summary, these findings suggest that a low reprogramming potential is a general feature of epiblast-derived stem cells and that the Sox2 level is a determinant of the cellular reprogramming potential.  相似文献   
126.
Stem cell therapy is a promising treatment for incurable disorders including Huntington''s disease (HD). Adipose-derived stem cell (ASC) is an easily available source of stem cells. Since ASCs can be differentiated into nervous stem cells, it has clinically feasible potential for neurodegenerative disease. In addition, ASCs secrete various anti-apoptotic growth factors, which improve the symptoms of disease from transplanted ASCs. Thus, cell-free extracts of ASCs (ASCs-E) could be a potential candidate for treatment of HD. Here, we investigated effects of ASCs-E on R6/2 HD mouse model and neuronal cells. In R6/2 HD model, injection of ASCs-E improved the performance in Rotarod test. ASCs-E also ameliorated striatal atrophy and mutant huntingtin aggregation in the striatum. In Western blot increased expressions of p-Akt, p-CREB and PGC1α were noted by injection of ASCs-E, when comparing to the R6/2 HD model. Neuro2A neuroblastoma cells treated with ASCs-E showed increased expression of p-CREB and PGC1α. In conclusion, ASCs-E delayed disease progression in animal model of HD by restoring of CREB-PGC1α pathway and could be a potential resource for treatment of HD.  相似文献   
127.
Accumulating evidence(s) indicate that CXCL12-CXCR4 signaling cascade plays an important role in the process of invasion and metastasis that accounts for more than 80% of deaths in hepatocellular carcinoma (HCC) patients. Thus, identification of novel agents that can downregulate CXCR4 expression and its associated functions have a great potential in the treatment of metastatic HCC. In the present report, we investigated an anthraquinone derivative, emodin for its ability to affect CXCR4 expression as well as function in HCC cells. We observed that emodin downregulated the expression of CXCR4 in a dose-and time-dependent manner in HCC cells. Treatment with pharmacological proteasome and lysosomal inhibitors did not have substantial effect on emodin-induced decrease in CXCR4 expression. When investigated for the molecular mechanism(s), it was observed that the suppression of CXCR4 expression was due to downregulation of mRNA expression, inhibition of NF-κB activation, and abrogation of chromatin immunoprecipitation activity. Inhibition of CXCR4 expression by emodin further correlated with the suppression of CXCL12-induced migration and invasion in HCC cell lines. In addition, emodin treatment significantly suppressed metastasis to the lungs in an orthotopic HCC mice model and CXCR4 expression in tumor tissues. Overall, our results show that emodin exerts its anti-metastatic effect through the downregulation of CXCR4 expression and thus has the potential for the treatment of HCC.  相似文献   
128.
Mitochondrial targeting of antioxidants has been an area of interest due to the mitochondria''s role in producing and metabolizing reactive oxygen species. Antioxidants, especially vitamin E (α-tocopherol), have been conjugated to lipophilic cations to increase their mitochondrial targeting. Synthetic vitamin E analogues have also been produced as an alternative to α-tocopherol. In this paper, we investigated the mitochondrial targeting of a vitamin E metabolite, 2,5,7,8-tetramethyl-2-(2′-carboxyethyl)-6-hydroxychroman (α-CEHC), which is similar in structure to vitamin E analogues. We report a fast and efficient method to conjugate the water-soluble metabolite, α-CEHC, to triphenylphosphonium cation via a lysine linker using solid phase synthesis. The efficacy of the final product (MitoCEHC) to lower oxidative stress was tested in bovine aortic endothelial cells. In addition the ability of MitoCEHC to target the mitochondria was examined in type 2 diabetes db/db mice. The results showed mitochondrial accumulation in vivo and oxidative stress decrease in vitro.  相似文献   
129.
Chung  H. H.  Kamar  C. K. A.  Lim  L. W. K.  Liao  Y.  Lam  T. T.  Chong  Y. L. 《Journal of Ichthyology》2020,60(1):90-98
Journal of Ichthyology - The Kottelat rasbora Rasbora hobelmani is a small ray-finned fish categorized under the genus Rasbora in the Cyprinidae family. In this study, the complete mitogenome...  相似文献   
130.
Abstract

The inhibition of α-glucosidase is used as a key clinical approach to treat type 2 diabetes mellitus and thus, we assessed the inhibitory effect of α-ketoglutaric acid (AKG) on α-glucosidase with both an enzyme kinetic assay and computational simulations. AKG bound to the active site and interacted with several key residues, including ASP68, PHE157, PHE177, PHE311, ARG312, TYR313, ASN412, ILE434 and ARG439, as detected by protein–ligand docking and molecular dynamics simulations. Subsequently, we confirmed the action of AKG on α-glucosidase as mixed-type inhibition with reversible and rapid binding. The relevant kinetic parameter IC50 was measured (IC50 = 1.738?±?0.041?mM), and the dissociation constant was determined (Ki Slope = 0.46?±?0.04?mM). Regarding the relationship between structure and activity, a high AKG concentration induced the slight modulation of the shape of the active site, as monitored by hydrophobic exposure. This tertiary conformational change was linked to AKG inhibition and mostly involved regional changes in the active site. Our study provides insight into the functional role of AKG due to its structural property of a hydroxyphenyl ring that interacts with the active site. We suggest that similar hydroxyphenyl ring-containing compounds targeting key residues in the active site might be potential α-glucosidase inhibitors. Abbreviations AKG alpha-ketoglutaric acid

pNPG 4-nitrophenyl-α-d-glucopyranoside

ANS 1-anilinonaphthalene-8-sulfonate

MD molecular dynamics.

Communicated by Ramaswamy H. Sarma  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号