首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23017篇
  免费   1838篇
  国内免费   1682篇
  26537篇
  2024年   53篇
  2023年   294篇
  2022年   649篇
  2021年   1140篇
  2020年   763篇
  2019年   917篇
  2018年   858篇
  2017年   604篇
  2016年   901篇
  2015年   1451篇
  2014年   1578篇
  2013年   1781篇
  2012年   2059篇
  2011年   1766篇
  2010年   1144篇
  2009年   965篇
  2008年   1290篇
  2007年   1052篇
  2006年   1006篇
  2005年   804篇
  2004年   680篇
  2003年   590篇
  2002年   471篇
  2001年   442篇
  2000年   372篇
  1999年   379篇
  1998年   242篇
  1997年   207篇
  1996年   210篇
  1995年   203篇
  1994年   207篇
  1993年   141篇
  1992年   186篇
  1991年   184篇
  1990年   123篇
  1989年   149篇
  1988年   92篇
  1987年   74篇
  1986年   92篇
  1985年   88篇
  1984年   34篇
  1983年   36篇
  1982年   38篇
  1981年   17篇
  1980年   30篇
  1979年   22篇
  1978年   20篇
  1977年   21篇
  1974年   11篇
  1972年   14篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
101.

Background

The brain predominantly expressed RING finger protein, Znf179, is known to be important for embryonic neuronal differentiation during brain development. Downregulation of Znf179 has been observed in motor neurons of adult mouse models for amyotrophic lateral sclerosis (ALS), yet the molecular function of Znf179 in neurodegeneration has never been previously described. Znf179 contains the classical C3HC4 RING finger domain, and numerous proteins containing C3HC4 RING finger domain act as E3 ubiquitin ligases. Hence, we are interested to identify whether Znf179 possesses E3 ligase activity and its role in ALS neuropathy.

Methods

We used in vivo and in vitro ubiquitination assay to examine the E3 ligase autoubiquitination activity of Znf179 and its effect on 26S proteasome activity. To search for the candidate substrates of Znf179, we immunoprecipitated Znf179 and subjected to mass spectrometry (MS) analysis to identify its interacting proteins. We found that ALS/ FTLD-U (frontotemporal lobar degeneration (FTLD) with ubiquitin inclusions)-related neurodegenerative TDP-43 protein is the E3 ligase substrate of Znf179. To further clarify the role of E3 ubiquitin ligase Znf179 in neurodegenerative TDP-43-UBI (ubiquitinated inclusions) (+) proteinopathy, the effect of Znf179-mediated TDP-43 polyubiquitination on TDP-43 protein stability, aggregate formation and nucleus/cytoplasm mislocalization were evaluated in vitro cell culture system and in vivo animal model.

Results

Here we report that Znf179 is a RING E3 ubiquitin ligase which possesses autoubiquitination feature and regulates 26S proteasome activity through modulating the protein expression levels of 19S/20S proteasome subunits. Our immunoprecipitation assay and MS analysis results revealed that the neuropathological TDP-43 protein is one of its E3 ligase substrate. Znf179 interactes with TDP-43 protein and mediates polyubiquitination of TDP-43 in vitro and in vivo. In neurodegenerative TDP-43 proteinopathy, we found that Znf179-mediated polyubiquitination of TDP-43 accelerates its protein turnover rate and attenuates insoluble pathologic TDP-43 aggregates, while knockout of Znf179 in mouse brain results in accumulation of insoluble TDP-43 and cytosolic TDP-43 inclusions in cortex, hippocampus and midbrain regions.

Conclusions

Here we unveil the important role for the novel E3 ligase Znf179 in TDP-43-mediated neuropathy, and provide a potential therapeutic strategy for combating ALS/ FTLD-U neurodegenerative pathologies.
  相似文献   
102.
The incidence of lung cancer is increasing worldwide. Although great progress in lung cancer treatment has been made, the clinical outcome is still unsatisfactory. Tripartite motif (TRIM)-containing proteins has been shown to be closely related to tumor progression. However, the function of TRIM46 in lung cancer is largely unknown. Here, TRIM46 amplification was found in lung adenocarcinoma (LUAD) tissues and TRIM46 amplification was significantly associated with a poor survival rate. Overexpression of wild type TRIM46 increased the proliferation of LUAD cells and glycolysis, promoted xenografts growth, and enhanced cisplatin (DDP) resistance of LUAD cells via increased ubiquitination of pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2) and upregulation of p-AKT. In contrast, overexpression of RING-mutant TRIM46 did not show any effects, suggesting the function of TRIM46 was dependent on the E3 ligase activity. Furthermore, we found that TRIM46 promoted LUAD cell proliferation and DDP resistance by enhancing glycolysis. PHLPP2 overexpression reversed the effects of TRIM46 overexpression. Amplification of TRIM46 also promoted LUAD growth and enhanced its DDP resistance in a patient-derived xenograft (PDX) model. In conclusion, our data highlight the importance of TRIM46/PHLPP2/AKT signaling in lung cancer and provide new insights into therapeutic strategies for lung cancer.Subject terms: Cancer, Biomarkers  相似文献   
103.
As an important organic compound, chiral alcohols are the key chiral building blocks to many single enantiomer pharmaceuticals. Asymmetric reduction of the corresponding prochiral ketones to produce the chiral alcohols by biocatalysis is one of the most promising routes. Asymmetric reduction of different kinds of non-natural prochiral ketones catalyzed by various plants tissue was studied in this work. Acetophenone, 4'-chloroacetophenone and ethyl 4-chloroacetoacetate were chosen as the model substrates for simple ketone, halogen-containing aromatic ketone and beta-ketoesters, respectively. Apple (Malus pumila), carrot (Daucus carota), cucumber (Cucumis sativus), onion (Allium cepa), potato (Soanum tuberosum), radish (Raphanus sativus) and sweet potato (Ipomoea batatas) were chosen as the biocatalysts. It was found that these kinds of prochiral ketoness could be reduced by these plants tissue with high enantioselectivity. Both R- and S-form configuration chiral alcohols could be obtained. The e.e. and chemical yield could reach about 98 and 80% respectively for acetophenone and 4'-chloroacetophenone reduction reaction with favorable plant tissue. And the e.e. and yield for ethyl 4-chloroacetoacetate reduction reaction was about 91 and 45% respectively.  相似文献   
104.
We announce a 4.63-Mb genome assembly of an isolated bacterium that is the first sequenced nicotine-degrading Arthrobacter strain. Nicotine catabolism genes of the nicotine-degrading plasmid pAO1 were predicted, but plasmid function genes were not found. These results will help to better illustrate the molecular mechanism of nicotine degradation by Arthrobacter.  相似文献   
105.
Homocamptothecin (hCPT) is an E‐ring modified camptothecin (CPT) analogue, which showed pronounced inhibitory activity of topoisomerase I. In search of novel hCPT‐type anticancer agents, two series of hCPT derivatives were synthesized and evaluated in vitro against three human tumor cell lines. The results indicated that the 10‐substituted hCPT derivatives had a considerably higher cytotoxic activity than the 12‐substituted ones. Among the 10‐substituted compounds, 8a, 8b, 9b , and 9i showed an equivalent or even more potent activity than the positive control drug topotecan against the lung cancer cell line A‐549. Moreover, the hCPT analogues 8a and 8b exhibited a higher topoisomerase I inhibitory activity than CPT at a concentration of 100 μM .  相似文献   
106.
107.
Trichosanthin(TCS)isanimportantmemberofribosomeinactivatingproteins[1].ItpossessesNglycosidaseactivityremovingadenine(ADE)atpositionA4324of28SrRNA[2].TheactivepocketofNglycosidasehasbeenestablishedthroughthecrystalstructuresofTCS,αMMCandricinandassayofmutants…  相似文献   
108.
Xanthomonas campestris pv. campestris (Xcc) controls virulence and plant infection mechanisms via the activity of the sensor kinase and response regulator pair HpaS/hypersensitive response and pathogenicity G (HrpG). Detailed analysis of the regulatory role of HpaS has suggested the occurrence of further regulators besides HrpG. Here we used in vitro and in vivo approaches to identify the orphan response regulator VemR as another partner of HpaS and to characterize relevant interactions between components of this signalling system. Bacterial two-hybrid and protein pull-down assays revealed that HpaS physically interacts with VemR. Phos-tag SDS-PAGE analysis showed that mutation in hpaS reduced markedly the phosphorylation of VemR in vivo. Mutation analysis reveals that HpaS and VemR contribute to the regulation of motility and this relationship appears to be epistatic. Additionally, we show that VemR control of Xcc motility is due in part to its ability to interact and bind to the flagellum rotor protein FliM. Taken together, the findings describe the unrecognized regulatory role of sensor kinase HpaS and orphan response regulator VemR in the control of motility in Xcc and contribute to the understanding of the complex regulatory mechanisms used by Xcc during plant infection.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号