首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24884篇
  免费   1983篇
  国内免费   1184篇
  2023年   201篇
  2022年   352篇
  2021年   872篇
  2020年   594篇
  2019年   745篇
  2018年   744篇
  2017年   602篇
  2016年   847篇
  2015年   1367篇
  2014年   1478篇
  2013年   1798篇
  2012年   2056篇
  2011年   1815篇
  2010年   1126篇
  2009年   948篇
  2008年   1341篇
  2007年   1159篇
  2006年   1114篇
  2005年   956篇
  2004年   835篇
  2003年   774篇
  2002年   650篇
  2001年   591篇
  2000年   544篇
  1999年   489篇
  1998年   271篇
  1997年   215篇
  1996年   206篇
  1995年   185篇
  1994年   201篇
  1993年   153篇
  1992年   295篇
  1991年   263篇
  1990年   212篇
  1989年   254篇
  1988年   181篇
  1987年   158篇
  1986年   163篇
  1985年   162篇
  1984年   84篇
  1983年   97篇
  1982年   73篇
  1981年   48篇
  1980年   59篇
  1979年   72篇
  1978年   46篇
  1977年   94篇
  1976年   55篇
  1975年   52篇
  1974年   65篇
排序方式: 共有10000条查询结果,搜索用时 656 毫秒
11.
Diabetic nephropathy (DN) as a global health concern is closely related to inflammation and oxidation. Isoliquiritigenin (ISL), a natural flavonoid compound, has been demonstrated to inhibit inflammation in macrophages. Herein, we investigated the effect of ISL in protecting against the injury in STZ-induced type 1 DN and in high glucose-induced NRK-52E cells. In this study, it was revealed that the administration of ISL not only ameliorated renal fibrosis and apoptosis, but also induced the deterioration of renal function in diabetic mice. Mediated by MAPKs and Nrf-2 signaling pathways, respectively, upstream inflammatory response and oxidative stress were neutralized by ISL in vitro and in vivo. Moreover, as further revealed by the results of molecular docking, sirtuin 1 (SIRT1) binds to ISL directly, and the involvement of SIRT1 in ISL-mediated renoprotective effects was confirmed by studies using in vitro models of SIRT1 overexpression and knockdown. In summary, by reducing inflammation and oxidative stress, ISL has a significant pharmacological effect on the deterioration of DN. The benefits of ISL are associated with the direct binding to SIRT1, the inhibition of MAPK activation, and the induction of Nrf-2 signaling, suggesting the potential of ISL for DN treatment.Subject terms: Pharmacology, Molecular biology  相似文献   
12.
13.
A Di Cerbo  D Corda 《Biochimie》1999,81(5):415-424
The elucidation of the multiple signaling cascades coupled to the TSH receptor has offered new approaches in the understanding of the pathogenesis of Graves' disease. Here we review findings showing that immunoglobulins from Graves' patients are heterogeneous, bind to different epitopes and, similarly to TSH, activate different signaling pathways, including adenylyl cyclase, phospholipase C and phospholipase A2. Evidence that the multiplicity of signals correlates with the different manifestations of the disease is also summarized. We believe that the dissection of the molecular mechanisms involved in the pathogenesis of Graves' disease offers the basis for developing novel therapeutical approaches to this disease.  相似文献   
14.
15.
16.
The molecular mechanism that controls the proliferation and differentiation of prostate epithelial cells is currently unknown. We previously identified a 44-kDa protein (p44/wdr77) as an androgen receptor-interacting protein that regulates a set of androgen receptor target genes in prostate epithelial cells and prostate cancer. In this study, we found that p44 localizes in the cytoplasm of prostate epithelial cells at the early stage of prostate development when cells are proliferating, and its nuclear translocation is associated with cellular and functional differentiation in adult prostate tissue. We further demonstrated that cytoplasmic p44 protein is essential for proliferation of prostate epithelial cells, whereas nuclear p44 is required for cell differentiation and prostate- specific protein secretion. These studies suggest a novel mechanism by which proliferation and differentiation of prostate epithelial cells are controlled by p44’s location in the cell.  相似文献   
17.
Neuropeptide Y (NPY) is an evolutionarily conserved neurosecretory molecule implicated in a diverse complement of functions across taxa and in regulating feeding behavior and reproductive maturation in Octopus. However, little is known about the precise molecular circuitry of NPY-mediated behaviors and physiological processes, which likely involve a complex interaction of multiple signal molecules in specific brain regions. Here, we examined the expression of NPY throughout the Octopus central nervous system. The sequence analysis of Octopus NPY precursor confirmed the presence of both, signal peptide and putative active peptides, which are highly conserved across bilaterians. In situ hybridization revealed distinct expression of NPY in specialized compartments, including potential “integration centers,” where visual, tactile, and other behavioral circuitries converge. These centers integrating separate circuits may maintain and modulate learning and memory or other behaviors not yet attributed to NPY-dependent modulation in Octopus. Extrasomatic localization of NPY mRNA in the neurites of specific neuron populations in the brain suggests a potential demand for immediate translation at synapses and a crucial temporal role for NPY in these cell populations. We also documented the presence of NPY mRNA in a small cell population in the olfactory lobe, which is a component of the Octopus feeding and reproductive control centers. However, the molecular mapping of NPY expression only partially overlapped with that produced by immunohistochemistry in previous studies. Our study provides a precise molecular map of NPY mRNA expression that can be used to design and test future hypotheses about molecular signaling in various Octopus behaviors.  相似文献   
18.
Human Amniotic Epithelial Cells (hAEC) isolated from term placenta are a promising source for regenerative medicine. However, it has long been debated whether the hAEC population consists of heterogeneous or homogeneous cells. In a previous study, we investigated the characteristics of hAEC isolated from four different regions of the amniotic membrane finding significant heterogeneity. The aim of this study was to evaluate the hepatic differentiation capability of hAEC isolated from these four regions. Human term placentae were collected after caesarean section and hAEC were isolated from four regions of the amniotic membrane (R1-R4, according to their relative distance from the umbilical cord) and treated in hepatic differentiation conditions for 14 days. hAEC-derived hepatocyte-like cells showed marked differences in the expression of hepatic markers: R4 showed higher levels of Albumin and Hepatocyte Nuclear Factor (HNF) 4α whereas R1 expressed higher Cytochrome P450 enzymes, both at the gene and protein level. These preliminary results suggest that hAEC isolated from R1 and R4 of the amniotic membrane are more prone to hepatic differentiation. Therefore, the use of hAEC from a specific region of the amniotic membrane should be taken into consideration as it could have an impact on the outcome of therapeutic applications.  相似文献   
19.
The DNA of fifteen Italian cultivars of durum wheat (Triticum turgidum L. ssp. durum) were analyzed by in fluorescence amplified fragment length polymorphism (fAFLP) in order to obtain the characteristic fingerprintings of genotypes and assess their genetic relatedness. Among 64 combinations of fluorescence labelled primers, three different combinations were chosen as producing a total of 6630 AFLP fragments, 2277 (34.3 %) of them being polymorphic. By using this fAFLP methodology a DNA fingerprinting of each durum wheat cultivar was generated for genotype identification. Analysis of the genetic relationships show the low variability among durum wheat cultivars.  相似文献   
20.
Hepatocellular carcinoma (HCC) is a subtype of malignant liver cancer with poor prognosis and limited treatment options. It is noteworthy that mechanical forces in tumor microenvironment play a pivotal role in mediating the behaviors and functions of tumor cells. As an instrumental type of mechanical forces in vivo, fluid shear stress (FSS) has been reported having potent physiologic and pathologic effects on cancer progression. However, the time-dependent mechanochemical transduction in HCC induced by FSS remains unclear. In this study, hepatocellular carcinoma HepG2 cells were exposed to 1.4 dyn/cm2 FSS for transient duration (15s and 30s), short duration (5 min, 15 min and 30 min) and long duration (1h, 2h and 4h), respectively. The expression and translocation of Integrins induced FAK-Rho GTPases signaling events were examined. Our results showed that FSS endowed HepG2 cells with higher migration ability via reorganizing cellular F-actin and disrupting intercellular tight junctions. We further demonstrated that FSS regulated the expression and translocation of Integrins and their downstream signaling cascade in time-dependent patterns. The FSS downregulated focal adhesion components (Paxillin, Vinculin and Talin) while upregulated the expression of Rho GTPases (Cdc42, Rac1 and RhoA) in long durations. These results indicated that FSS enhanced tumor cell migration through Integrins-FAK-Rho GTPases signaling pathway in time-dependent manners. Our in vitro findings shed new light on the role of FSS acting in physiologic and pathological processes during tumor progression, which has emerged as a promising clinical strategy for liver carcinoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号