首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   790篇
  免费   90篇
  880篇
  2023年   3篇
  2022年   10篇
  2021年   23篇
  2020年   8篇
  2019年   12篇
  2018年   18篇
  2017年   8篇
  2016年   17篇
  2015年   29篇
  2014年   26篇
  2013年   45篇
  2012年   59篇
  2011年   41篇
  2010年   27篇
  2009年   25篇
  2008年   54篇
  2007年   49篇
  2006年   39篇
  2005年   39篇
  2004年   47篇
  2003年   33篇
  2002年   32篇
  2001年   23篇
  2000年   26篇
  1999年   13篇
  1998年   12篇
  1997年   8篇
  1996年   6篇
  1995年   8篇
  1994年   6篇
  1993年   7篇
  1992年   12篇
  1991年   10篇
  1990年   10篇
  1989年   6篇
  1988年   9篇
  1987年   14篇
  1986年   5篇
  1985年   13篇
  1984年   9篇
  1983年   7篇
  1982年   4篇
  1980年   2篇
  1979年   4篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1968年   2篇
  1924年   2篇
排序方式: 共有880条查询结果,搜索用时 15 毫秒
41.
Uranium-contaminated sediment and water collected from an inactive uranium mine were incubated anaerobically with organic substrates. Stimulated microbial populations removed U almost entirely from solution within 1 month. X-ray absorption near-edge structure analysis showed that U(VI) was reduced to U(IV) during the incubation. Observations by transmission electron microscopy, selected area diffraction pattern analysis, and energy-dispersive X-ray spectroscopic analysis showed two distinct types of prokaryotic cells that precipitated only a U(IV) mineral uraninite (UO2) or both uraninite and metal sulfides. Prokaryotic cells associated with uraninite and metal sulfides were inferred to be sulfate-reducing bacteria. Phylogenetic analysis of 16S ribosomal DNA obtained from the original and incubated sediments revealed that microbial populations were changed from microaerophilic Proteobacteria to anaerobic low-G+C gram-positive sporeforming bacteria by the incubation. Forty-two out of 94 clones from the incubated sediment were related to sulfate-reducing Desulfosporosinus spp., and 23 were related to fermentative Clostridium spp. The results suggest that, if in situ bioremediation were attempted in the uranium mine ponds, Desulfosporosinus spp. would be a major contributor to U(VI) and sulfate reduction and Clostridium spp. to U(VI) reduction.  相似文献   
42.
Pyrococcus furiosus ferredoxin is the only known example of a ferredoxin containing a single [4Fe-4S] cluster that has non-cysteinyl ligation of one iron atom, as evidenced by the replacement of a ligating cysteine residue by an aspartic acid residue in the amino acid sequence. The properties of the iron-sulfur cluster in both the aerobically and anaerobically isolated ferredoxin have been characterized by EPR, magnetic circular dichroism, and resonance Raman spectroscopies. The anaerobically isolated ferrodoxin contains a [4Fe-4S]+,2+ cluster with anomalous properties in both the oxidized and reduced states which are attributed to aspartate and/or hydroxide coordination of a specific iron atom. In the reduced form, the cluster exists with a spin mixture of S = 1/2 (20%) and S = 3/2 (80%) ground states. The dominant S = 3/2 form has a unique EPR spectrum that can be rationalized by an S = 3/2 spin Hamiltonian with E/D = 0.22 and D = +3.3 +/- 0.2 cm-1. The oxidized cluster has an S = 0 ground state, and the resonance Raman spectrum is characteristic of a [4Fe-4S]2+ cluster except for the unusually high frequency for the totally symmetric breathing mode of the [4Fe-4S] core, 342 cm-1. Comparison with Raman spectra of other [4Fe-4S]2+ centers suggests that this behavior is diagnostic of anomalous coordination of a specific iron atom. The iron-sulfur cluster is shown to undergo facile and quantitative [4Fe-4S] in equilibrium [3Fe-4S] interconversion, and the oxidized and reduced forms of the [3Fe-4S] cluster have S = 1/2 and S = 2 ground states, respectively. In both redox states the [3Fe-4S]0,+ cluster exhibits spectroscopic properties analogous to those of similar clusters in other bacterial ferredoxins, suggesting non-cysteinyl coordination for the iron atom that is removed by ferricyanide oxidation. Aerobic isolation induces partial degradation of the [4Fe-4S] cluster to yield [3Fe-4S] and possibly [2Fe-2S] centers. Evidence is presented to show that only the [4Fe-4S] form of this ferredoxin exists in vivo.  相似文献   
43.
Despite major improvements in tools and significant refinements of techniques, microsurgical anastomosis still carries a significant risk of failure due to microvascular thrombosis. The key to improving the success of microvascular surgery may lie in the pharmacologic control of thrombus formation. Central to pathologic arterial thrombosis are platelets. Glycoprotein IIb/IIIa is a highly abundant platelet surface receptor that plays a major role in platelet aggregation by binding platelets to each other through the coagulation factor fibrinogen. To explore the ability of antithrombotic agents to prevent microvascular thrombosis, a rabbit ear artery model was used in which a standardized arterial injury results in predictable thrombus formation. This model was used to examine whether SR121566A, a specific and potent glycoprotein IIb/IIIa inhibitor, can successfully prevent microsurgical thrombosis.Using a coded, double-blind experimental design, 20 rabbits (40 arteries) were assigned to four treatment groups: (1) saline injection (n = 10), (2) acetylsalicylic acid 10 mg/kg (n = 10), (3) heparin 0.5 mg/kg bolus with subsequent intermittent boluses of 0.25 mg/kg every 30 minutes (n = 10), and (4) SR121566A 2 mg/kg bolus (n = 10). After vessel damage and clamp release, arteries were assessed for patency at 5, 30, and 120 minutes by the Acland refill test. Coagulation assays, in vivo bleeding times, and ex vivo platelet aggregation studies were also conducted. Scanning electron microscopy was used to examine mural thrombus composition.A significant, fourfold increase in vessel patency following administration of SR121566A over saline control (80 percent versus 20 percent patency, respectively, at 35 minutes after reperfusion, p < 0.01) was noted. This was correlated with marked inhibition of ex vivo platelet aggregation. This antiplatelet treatment did not prolong coagulation assays (mean international normalized ratio: saline, 0.66 +/- 0.04; SR121566A, 0.64 +/- 0.03; mean thromboplastin time: saline, 19.63 +/- 0.67; SR121566A, 17.87 +/- 3.27) and bleeding times (mean bleeding time: saline, 42 +/- 4; SR121566A, 48 +/- 6). Scanning electron microscopy demonstrated extensive platelet and fibrin deposition in control vessel thrombi. In contrast, thrombi from SR121566A-treated vessels demonstrated predominance of fibrin with few platelets when examined under scanning electron microscopy.Administration of SR121566A was associated with a significant increase in vessel patency, without deleterious effects on coagulation assays or bleeding times. The increase in vessel patency was correlated with inhibition of platelet aggregation and decreased platelet deposition, as demonstrated by scanning electron microscopy. Glycoprotein IIb/IIIa antagonists represent a new class of anti-platelet agents that may be suited for inhibiting microsurgical thrombosis. This study supports further investigation into the use of these agents in microsurgery.  相似文献   
44.
Saccharomyces cerevisiae mating pheromones trigger dissociation of a heterotrimeric G protein (Galphabetagamma) into Galpha-guanosine triphosphate (GTP) and Gbetagamma. The Gbetagamma dimer regulates both mitogen-activated protein (MAP) kinase cascade signaling and cell polarization. Here, by independently activating the MAP kinase pathway, we studied the polarity role of Gbetagamma in isolation from its signaling role. MAP kinase signaling alone could induce cell asymmetry but not directional growth. Surprisingly, active Gbetagamma, either alone or with Galpha-GTP, could not organize a persistent polarization axis. Instead, following pheromone gradients (chemotropism) or directional growth without pheromone gradients (de novo polarization) required an intact receptor-Galphabetagamma module and GTP hydrolysis by Galpha. Our results indicate that chemoattractant-induced cell polarization requires continuous receptor-Galphabetagamma communication but not modulation of MAP kinase signaling. To explore regulation of Gbetagamma by Galpha, we mutated Gbeta residues in two structurally distinct Galpha-Gbeta binding interfaces. Polarity control was disrupted only by mutations in the N-terminal interface, and not the Switch interface. Incorporation of these mutations into a Gbeta-Galpha fusion protein, which enforces subunit proximity, revealed that Switch interface dissociation regulates signaling, whereas the N-terminal interface may govern receptor-Galphabetagamma coupling. These findings raise the possibility that the Galphabetagamma heterotrimer can function in a partially dissociated state, tethered by the N-terminal interface.  相似文献   
45.
46.
LKB1/STRAD promotes axon initiation during neuronal polarization   总被引:3,自引:0,他引:3  
Shelly M  Cancedda L  Heilshorn S  Sumbre G  Poo MM 《Cell》2007,129(3):565-577
Axon/dendrite differentiation is a critical step in neuronal development. In cultured hippocampal neurons, the accumulation of LKB1 and STRAD, two interacting proteins critical for establishing epithelial polarity, in an undifferentiated neurite correlates with its subsequent axon differentiation. Downregulation of either LKB1 or STRAD by siRNAs prevented axon differentiation, and overexpression of these proteins led to multiple axon formation. Furthermore, interaction of STRAD with LKB1 promoted LKB1 phosphorylation at a PKA site S431 and elevated the LKB1 level, and overexpressing LKB1 with a serine-to-alanine mutation at S431 (LKB1(S431A)) prevented axon differentiation. In developing cortical neurons in vivo, downregulation of LKB1 or overexpression of LKB1(S431A) also abolished axon formation. Finally, local exposure of the undifferentiated neurite to brain-derived neurotrophic factor or dibutyryl-cAMP promoted axon differentiation in a manner that depended on PKA-dependent LKB1 phosphorylation. Thus local LKB1/STRAD accumulation and PKA-dependent LKB1 phosphorylation represents an early signal for axon initiation.  相似文献   
47.
The sulfhydryl reactant N-ethylmaleimide (NEM) stimulates the release and cyclooxygenase metabolism of arachidonic acid in rat alveolar macrophages. Because both 5-lipoxygenation and leukotriene (LT) C4 synthesis represent sulfhydryl-dependent steps in the 5-lipoxygenase pathway, we examined the effect of NEM on 5-lipoxygenase, as well as cyclooxygenase, metabolism in resting and agonist-stimulated cells by reverse-phase high performance liquid chromatography and radioimmunoassay. NEM at 5-10 microM stimulated the synthesis of thromboxane, but not prostaglandin E2 or the 5-lipoxygenase products LTC4, LTB4, or 5-hydroxyeicosatetraenoic acid from endogenously released arachidonate. In the presence of exogenous fatty acid, however, NEM stimulated the synthesis of large quantities of LTB4. The effect of NEM on arachidonate metabolism stimulated by the calcium ionophore A23187 and the particulate zymosan was also investigated. NEM augmented arachidonate release and thromboxane synthesis stimulated by A23187 but inhibited A23187-induced LTC4 synthesis with an IC50 of approximately 4.3 microM. This inhibitory effect closely paralleled the ability of NEM to deplete intracellular glutathione (IC50 approximately 4.3 microM). Preincubation with the intracellular cysteine delivery agent L-2-oxothiazolidine-4-carboxylate augmented intracellular glutathione concentration and A23187-stimulated LTC4 synthesis and attenuated the capacity of NEM to deplete glutathione and inhibit LTC4 synthesis. While LTB4 and 5-hydroxyeicosatetraenoic synthesis were unaffected at these low NEM concentrations, LTB4 synthesis was inhibited at high concentrations (IC50 approximately 210 microM). Zymosan-induced eicosanoid synthesis was modulated by NEM in a similar fashion. Thus, NEM is an agonist of arachidonate metabolism with the capacity to modulate the spectrum of macrophage-derived eicosanoids by virtue of specific biochemical interactions with substrates and enzymes of the 5-lipoxygenase pathway.  相似文献   
48.
Bacillus circulans IAM1165 produces isoforms of beta-1,3-glucan-hydrolases. Of these enzymes, the 42-kDa enzyme BgIM degrades Aspergillus oryzae cell walls the most actively. A gene coding for a BgIM precursor consisting of 411 amino acid residues was cloned. The 27 N-terminal amino acid sequence of the precursor is a signal peptide. The 141 C-terminal amino acid sequence showed a motif of carbohydrate-binding module family 13. This domain bound to pachyman, lichenan, and A. oryzae cell walls. The central domain showed a bacterial beta-1,3-glucan-hydrolase motif belonging to glycosyl hydrolase family 16. By removal of the C-terminal domain in the IAM1165 culture, mature BglM was processed to several 27-kDa fragments that hydrolyze a soluble beta-1,3-glucan.  相似文献   
49.
Thermotoga maritima is the most thermophilic eubacterium currently known and grows up to 90 degrees C by a fermentative metabolism in which H2, CO2, and organic acids are end products. It was shown that the production of H2 is catalyzed by a single hydrogenase located in the cytoplasm. The addition of tungsten to the growth medium was found to increase both the cellular concentration of the hydrogenase and its in vitro catalytic activity by up to 10-fold, but the purified enzyme did not contain tungsten. It is a homotetramer of Mr 280,000 and contains approximately 20 atoms of Fe and 18 atoms of acid-labile sulfide/monomer. Other transition metals, including nickel (and also selenium), were present in only trace amounts (less than 0.1 atoms/monomer). The hydrogenase was unstable at both 4 and 23 degrees C, even under anaerobic conditions, but no activity was lost in anaerobic buffer containing glycerol and dithiothreitol. Under these conditions the enzyme was also quite thermostable (t50% approximately 1 h at 90 degrees C) but extremely sensitive to irreversible inactivation by O2 (t50% approximately 10 s in air). The optimum pH ranges for H2 evolution and H2 oxidation were 8.6-9.5 and greater than or equal to 10.4, respectively, and the optimum temperature for catalytic activity was above 95 degrees C. In contrast to mesophilic Fe hydrogenases, the T. maritima enzyme had very low H2 evolution activity, did not use T. maritima ferredoxin as an electron donor for H2 evolution, was inhibited by acetylene but not by nitrite, and exhibited EPR signals typical of [2Fe-2S]1+ clusters. Moreover, the oxidized enzyme did not exhibit the rhombic EPR signal that is characteristic of the catalytic iron-sulfur cluster of mesophilic Fe hydrogenases. These data suggest that T. maritima hydrogenase has a different FeS site and/or mechanism for catalyzing H2 production. The potential role of tungsten in regulating the activity of this enzyme is discussed.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号