首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1108篇
  免费   115篇
  1223篇
  2020年   11篇
  2019年   8篇
  2018年   11篇
  2017年   16篇
  2016年   16篇
  2015年   29篇
  2014年   28篇
  2013年   45篇
  2012年   55篇
  2011年   41篇
  2010年   30篇
  2009年   40篇
  2008年   48篇
  2007年   46篇
  2006年   39篇
  2005年   46篇
  2004年   44篇
  2003年   39篇
  2002年   45篇
  2001年   34篇
  2000年   37篇
  1999年   22篇
  1998年   12篇
  1997年   29篇
  1996年   16篇
  1995年   10篇
  1994年   27篇
  1993年   16篇
  1992年   10篇
  1991年   13篇
  1990年   14篇
  1989年   9篇
  1987年   10篇
  1986年   9篇
  1985年   8篇
  1984年   18篇
  1983年   18篇
  1982年   22篇
  1981年   12篇
  1980年   17篇
  1979年   12篇
  1978年   23篇
  1977年   18篇
  1976年   10篇
  1975年   12篇
  1974年   11篇
  1973年   13篇
  1972年   8篇
  1971年   13篇
  1969年   11篇
排序方式: 共有1223条查询结果,搜索用时 15 毫秒
101.
Summary The computation, assumptions, and properties of DNA-hybrid stability and reassociation indexes were reviewed. Different methods of computing the same index typically yielded similar values. However, because dissociation curves change from asymmetric to symmetric as increasingly divergent DNAs are compared, adequate determination of mode required fitting a complex function. Delta Tm, delta mode, and delta T50H correlated well up to ca. 12, and all were found to be useful indexes of genomic similarity in that range. They also exhibited similar levels of error, even though T50H comprises a percent reassociation component with relatively large variance. At greater distances, the delta Tm scale became markedly compressed because of the boundary imposed by the temperature of hybrid formation (incubation temperature). Though not compressed or technically limited by it, delta mode and delta T50H could not be extrapolated with certainty below the incubation temperature. Among theoretical problems discussed: Tm and mode index an increasingly small percentage of the genome as the extent of reassociation decreases, and they may compare different genomic segments as DNAs become highly diverged. T50H relies upon the assumptions that all sequences evolve at a constant rate and that reassociation behavior is the same among all sequences regardless of their extent of divergence. Tm and T50H may be biased by selfhybridization of repetitive elements or cross-hybridization of paralogous sequences. Delta mode is free of such biases as long as the genomes under comparison are not too diverged. No index was found to be best in all circumstances.  相似文献   
102.
103.
104.
105.
Janzen's seasonality hypothesis predicts that organisms inhabiting environments with limited climatic variability will evolve a reduced thermal tolerance breadth compared with organisms experiencing greater climatic variability. In turn, narrow tolerance breadth may select against dispersal across strong temperature gradients, such as those found across elevation. This can result in narrow elevational ranges and generate a pattern of isolation by environment or neutral genetic differentiation correlated with environmental variables that are independent of geographic distance. We tested for signatures of isolation by environment across elevation using genome‐wide SNP data from five species of Andean dung beetles (subfamily Scarabaeinae) with well‐characterized, narrow thermal physiologies, and narrow elevational distributions. Contrary to our expectations, we found no evidence of population genetic structure associated with elevation and little signal of isolation by environment. Further, elevational ranges for four of five species appear to be at equilibrium and show no decay of genetic diversity at range limits. Taken together, these results suggest physiological constraints on dispersal may primarily operate outside of a stable realized niche and point to a lower bound on the spatial scale of local adaptation.  相似文献   
106.
The underlying basis of genetic variation in quantitative traits, in terms of the number of causal variants and the size of their effects, is largely unknown in natural populations. The expectation is that complex quantitative trait variation is attributable to many, possibly interacting, causal variants, whose effects may depend upon the sex, age and the environment in which they are expressed. A recently developed methodology in animal breeding derives a value of relatedness among individuals from high‐density genomic marker data, to estimate additive genetic variance within livestock populations. Here, we adapt and test the effectiveness of these methods to partition genetic variation for complex traits across genomic regions within ecological study populations where individuals have varying degrees of relatedness. We then apply this approach for the first time to a natural population and demonstrate that genetic variation in wing length in the great tit (Parus major) reflects contributions from multiple genomic regions. We show that a polygenic additive mode of gene action best describes the patterns observed, and we find no evidence of dosage compensation for the sex chromosome. Our results suggest that most of the genomic regions that influence wing length have the same effects in both sexes. We found a limited amount of genetic variance in males that is attributed to regions that have no effects in females, which could facilitate the sexual dimorphism observed for this trait. Although this exploratory work focuses on one complex trait, the methodology is generally applicable to any trait for any laboratory or wild population, paving the way for investigating sex‐, age‐ and environment‐specific genetic effects and thus the underlying genetic architecture of phenotype in biological study systems.  相似文献   
107.
108.
Unidirectional flux rates of saturated fatty acids, saturated alcohols, and bile acids were measured in an intact rat diaphragm preparation. The logarithm of the permeability coefficients for fatty acids containing from five to ten carbon atoms was a linear function of the number of carbon atoms in the fatty acid chain. Incremental free energies of solution were +336 cal · mol−1 for the addition of a hydroxyl group and −258 cal · mol−1 for the addition of a methylene group. These incremental free energies were similar to those obtained by other investigators in other animal tissues, and our data suggest a structural similarity between membranes in different tissues and in different species. The muscle membrane exhibited anomalously high permeabilities for fatty acids containing less than five carbon atoms. Since muscle lacks tight junctions, this result suggests that small non-electrolytes traverse polar regions or aqueous pores within the cellular membrane.  相似文献   
109.
The observation that traits closely related to fitness ("fitness traits") have lower heritabilities than traits more distantly associated with fitness has traditionally been framed in terms of Fisher's fundamental theorem of natural selection-fitness traits are expected to have low levels of additive genetic variance due to rapid fixation of alleles conferring highest fitness. Subsequent treatments have challenged this view by pointing out that high environmental and nonadditive genetic contributions to phenotypic variation may also explain the low heritability of fitness traits. Analysis of a large data set from the collared flycatcher Ficedula albicollis confirmed a previous finding that traits closely associated with fitness tend to have lower heritability. However, analysis of coefficients of additive genetic variation (CVA) revealed that traits closely associated with fitness had higher levels of additive genetic variation (VA) than traits more distantly associated with fitness. Hence, the negative relationship between a trait's association with fitness and its heritability was not due to lower levels of VA in fitness traits but was due to their higher residual variance. However, whether the high residual variance was mainly due to higher levels of environmental variance or due to higher levels of nonadditive genetic variance remains a challenge to be addressed by further studies. Our results are consistent with earlier suggestions that fitness-related traits may have more complex genetic architecture than traits more distantly associated with fitness.  相似文献   
110.
1. Gene flow in populations of stream insects is expected to depend on the distance between and the connectedness of sites in stream networks, and on dispersal ability (i.e. larval drift and adult flight).
2. Yoraperla brevis (Banks) is an abundant and characteristic stonefly of smaller streams in the northern Rocky Mountains. The present authors analysed genetic structure at 27 sites in sevenz streams flowing into the Bitterroot River in western Montana, USA. Cellulose acetate electrophoresis identified five variable loci with 16 alleles.
3. Genotype frequencies conformed to Hardy–Weinberg expectations. Within-stream differentiation was low and among-stream variation ( F st) was an order of magnitude higher.
4. UPGMA grouped sites within streams and also grouped adjacent streams. The tree produced by the Neighbour Joining Method was similar although not quite so clear cut.
5. This orderly pattern (i.e. Hardy–Weinberg proportions, homogeneity within streams and geographical structure) contrasts strongly with patterns observed in invertebrates from subtropical streams in Australia. Yoraperla brevis maintains large populations in predictable environments, has a long life-cycle with a likelihood of cohort mixing, emerges synchronously in large breeding populations and occupies streams separated by areas of high relief; the Australian situation is the opposite in most respects.
6. Further analysis of a range of species is required to determine whether the different genetic structure in Y. brevis compared to the Australian species occurs more generally in North American stream insects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号