首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2721篇
  免费   198篇
  国内免费   121篇
  3040篇
  2023年   21篇
  2022年   57篇
  2021年   105篇
  2020年   72篇
  2019年   90篇
  2018年   101篇
  2017年   73篇
  2016年   86篇
  2015年   159篇
  2014年   158篇
  2013年   218篇
  2012年   225篇
  2011年   180篇
  2010年   128篇
  2009年   103篇
  2008年   95篇
  2007年   112篇
  2006年   104篇
  2005年   106篇
  2004年   105篇
  2003年   80篇
  2002年   55篇
  2001年   64篇
  2000年   55篇
  1999年   55篇
  1998年   28篇
  1997年   26篇
  1996年   23篇
  1995年   28篇
  1994年   27篇
  1993年   19篇
  1992年   39篇
  1991年   30篇
  1990年   18篇
  1989年   22篇
  1988年   15篇
  1987年   11篇
  1986年   13篇
  1985年   15篇
  1984年   17篇
  1983年   17篇
  1982年   14篇
  1981年   8篇
  1980年   6篇
  1979年   7篇
  1977年   6篇
  1976年   8篇
  1975年   8篇
  1974年   7篇
  1971年   8篇
排序方式: 共有3040条查询结果,搜索用时 15 毫秒
981.
Platelets are generated from the cytoplasm of megakaryocytes (MKs) via actin cytoskeleton reorganization. Zyxin is a focal adhesion protein and wildly expressed in eukaryotes to regulate actin remodeling. Zyxin is upregulated during megakaryocytic differentiation; however, the role of zyxin in thrombopoiesis is unknown. Here we show that zyxin ablation results in profound macrothrombocytopenia. Platelet lifespan and thrombopoietin level were comparable between wild-type and zyxin-deficient mice, but MK maturation, demarcation membrane system formation, and proplatelet generation were obviously impaired in the absence of zyxin. Differential proteomic analysis of proteins associated with macrothrombocytopenia revealed that glycoprotein (GP) Ib-IX was significantly reduced in zyxin-deficient platelets. Moreover, GPIb-IX surface level was decreased in zyxin-deficient MKs. Knockdown of zyxin in a human megakaryocytic cell line resulted in GPIbα degradation by lysosomes leading to the reduction of GPIb-IX surface level. We further found that zyxin was colocalized with vasodilator-stimulated phosphoprotein (VASP), and loss of zyxin caused diffuse distribution of VASP and actin cytoskeleton disorganization in both platelets and MKs. Reconstitution of zyxin with VASP binding site in zyxin-deficient hematopoietic progenitor cell-derived MKs restored GPIb-IX surface expression and proplatelet generation. Taken together, our findings identify zyxin as a regulator of platelet biogenesis and GPIb-IX surface expression through VASP-mediated cytoskeleton reorganization, suggesting possible pathogenesis of macrothrombocytopenia.Subject terms: Cytoskeleton, Disease genetics  相似文献   
982.
血凝素(hemagglutinin,HA)蛋白是禽流感病毒(avian influenza virus,AIV)的一个重要表面抗原性蛋白,在疾病诊断和防治上有重要意义。本研究为了探讨一种更为简便有效的HA重组蛋白表达途径,利用生物信息学软件,对H5N1亚型AIVHA基因编码的氨基酸序列进行分析,在分析其在大肠杆菌中的密码子偏好性、稀有密码子分布情况及有关蛋白的抗原性等重要特性后,构建了HA抗原表位重组表达质粒pET-32a(+)-HA。经测试,该重组质粒在1mmol/LIPTG诱导剂作用下诱导过夜,能在大肠杆菌Rosetta-gami B(DE3)中高效表达,并得到48.1kD大小的目的重组表达蛋白。重组蛋白用6×His-tagged protein纯化试剂盒纯化后,与福氏佐剂等量混合制备成抗原,以200μg/鸡的剂量皮下注射2月龄SPF鸡3次,采血分离血清。Western-Blot试验结果表明,该重组表达蛋白能分别与所制备的高免鸡血清及H5N1亚型AIV阳性血清发生特异性反应,在硝酸纤维素膜上出现特异性杂交带。说明本试验研究的HA抗原重组表达蛋白具有良好的免疫原性和反应原性,保留了HA蛋白的抗原活性,提示该重组蛋白在H5亚型AIV的防治技术研究中具有重要的实际应用价值。  相似文献   
983.
Dengue virus (DENV) is the principal arthropod-borne viral pathogen afflicting human populations. While repertoires of antibodies to DENV have been linked to protection or enhanced infection, the role of T lymphocytes in these processes remains poorly defined. This study provides a comprehensive overview of CD4+ and CD8+ T cell epitope reactivities against the DENV 2 proteome in adult patients experiencing secondary DENV infection. Dengue virus-specific T cell responses directed against an overlapping 15mer peptide library spanning the DENV 2 proteome were analyzed ex vivo by enzyme-linked immunosorbent spot assay, and recognition of individual peptides was further characterized in specific T cell lines. Thirty novel T cell epitopes were identified, 9 of which are CD4+ and 21 are CD8+ T cell epitopes. We observe that whereas CD8+ T cell epitopes preferentially target nonstructural proteins (NS3 and NS5), CD4+ epitopes are skewed toward recognition of viral components that are also targeted by B lymphocytes (envelope, capsid, and NS1). Consistently, a large proportion of dengue virus-specific CD4+ T cells have phenotypic characteristics of circulating follicular helper T cells (CXCR5 expression and production of interleukin-21 or gamma interferon), suggesting that they are interacting with B cells in vivo. This study shows that during a dengue virus infection, the protein targets of human CD4+ and CD8+ T cells are largely distinct, thus highlighting key differences in the immunodominance of DENV proteins for these two cell types. This has important implications for our understanding of how the two arms of the human adaptive immune system are differentially targeted and employed as part of our response to DENV infection.  相似文献   
984.
Pregnane-3,17 alpha,20-triols bearing unsaturation at delta(7), delta(8), delta(5,7), or delta(5,8) have been tentatively identified as steroid metabolites in Smith-Lemli-Opitz syndrome (SLOS). Starting with 17 alpha-hydroxypregnenolone diacetate, we have synthesized 13 unsaturated C(21) triols by four different routes in one to four steps. These multifunctional steroids were prepared by a series of regio- and stereoselective transformations chosen to minimize facile olefin isomerization and 17-deoxygenation. The results include a study of stereoselectivity in the reduction of 17 alpha-hydroxy-20-ketosteroids, an alternative method for reducing diethyl azodicarboxylate adducts of delta(5,7) steroids, and an efficient oxidation-isomerization of a delta(5,7) steroid using cholesterol oxidase. The 13 triols and their synthetic precursors were fully characterized by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The NMR data, together with molecular modeling, indicated unanticipated conformational heterogeneity for two synthetic intermediates, 17 alpha-hydroxypregna-4,7-diene-3,20-dione and 17 alpha-hydroxy-5 beta-pregn-7-ene-3,20-dione. The unsaturated C(21) triols are useful as reference standards to study adrenal steroid production in SLOS and to develop methods for pre- and postnatal diagnosis of this congenital disorder.  相似文献   
985.
Acetohydroxyacid synthase (AHAS) (acetolactate synthase, EC ) catalyzes the first step in branched-chain amino acid biosynthesis and is the target for sulfonylurea and imidazolinone herbicides. These compounds are potent and selective inhibitors, but their binding site on AHAS has not been elucidated. Here we report the 2.8 A resolution crystal structure of yeast AHAS in complex with a sulfonylurea herbicide, chlorimuron ethyl. The inhibitor, which has a K(i) of 3.3 nm, blocks access to the active site and contacts multiple residues where mutation results in herbicide resistance. The structure provides a starting point for the rational design of further herbicidal compounds.  相似文献   
986.
Cercidoideae, one of the six subfamilies of Leguminosae, contains one genus Cercis with its chromosome number 2n = 14 and all other genera with 2n = 28. An allotetraploid origin hypothesis for the common ancestor of non-Cercis genera in this subfamily has been proposed; however, no chromosome-level genomes from Cercidoideae have been available to test this hypothesis. Here, we conducted a chromosome-level genome assembly of Bauhinia variegata to test this hypothesis. The assembled genome is 326.4 Mb with the scaffold N50 of 22.1 Mb and contains 37,996 protein-coding genes. The Ks distribution between gene pairs in the syntenic regions indicates two whole-genome duplications (WGDs): one is B. variegata-specific, and the other is shared among core eudicots. Although Ks between gene pairs generated by the recent WGD in Bauhinia is greater than that between Bauhinia and Cercis, the WGD was not detected in Cercis, which can be explained by an accelerated evolutionary rate in Bauhinia after divergence from Cercis. Ks distribution and phylogenetic analysis for gene pairs generated by the recent WGD in Bauhinia and their corresponding orthologs in Cercis support the allopolyploidy origin hypothesis of Bauhinia. The genome of B. variegata also provides a genomic resource for dissecting genetic basis of its ornamental traits.  相似文献   
987.
Accumulating evidence indicates that disruption of the gut microbiota by a high-fat diet (HFD) may play a pivotal role in the progression of metabolic disorders such as non-alcoholic fatty liver disease (NAFLD). In this study, the structural changes of gut microbiota were analyzed in an HFD-induced NAFLD rat model during treatment with an ancient Chinese herbal formula (CHF) used in clinical practice – Qushi Huayu Fang. CHF treatment significantly reduced body weight, alleviated hepatic steatosis, and decreased the content of triglycerides and free fatty acids in the livers of the rats. Gut microbiota of treated and control rats were profiled with polymerase chain reaction-denaturing gradient gel electrophoresis and bar-coded pyrosequencing of the V3 region of 16S rRNA genes. Both analyses indicated that the CHF-treated group harbored significantly different gut microbiota from that of model rats. Partial least squares discriminant analysis and taxonomy-based analysis were further employed to identify key phylotypes responding to HFD and CHF treatment. Most notably, the genera Escherichia/Shigella, containing opportunistic pathogens, were significantly enriched in HFD-fed rats compared to controls fed normal chow (P < 0.05) but they decreased to control levels after CHF treatment. Collinsella, a genus with short chain fatty acid producers, was significantly elevated in CHF-treated rats compared to HFD-fed rats (P < 0.05). The results revealed that the bacterial profiles of HFD-induced rats could be modulated by the CHF. Elucidation of these differences in microbiota composition provided a basis for further understanding the pharmacological mechanism of the CHF.  相似文献   
988.
Luteolin, a flavonoid isolated from Cirsium japonicum, has antioxidant, anti-inflammatory and neuroprotective activities. Our previous studies brought a prospect that luteolin benefited diabetic rats with cognitive impairments. In this study, we examined whether luteolin could suppress the inflammatory cytokines, thus increasing synapse-associated proteins in streptozotocin (STZ)-induced diabetes in rat models. The model rats underwent luteolin treatment for 8 consecutive weeks, followed by assessment of cognitive performances with MWM test. Nissl staining was employed to assess the neuropathological changes in the hippocampus and the effects of luteolin on diabetic rats. With animals sacrificed, expressions of inflammatory cytokines including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) and synapse-associated proteins including growth-associated protein-43 (GAP-43) and synaptophysin (SYN) were determined. The results affirmed improvement of behavioral performances in the MWM test, downexpression of glycation end products (AGEs) in the plasma and the receptor for advanced glycation end products in the hippocampus, inhibition of IL-1β and TNF-α in both the hippocampus and plasma in diabetic rats. Furthermore, luteolin treatment upregulated the expressions of GAP-43 and SYN in the hippocampus. Thus, luteolin could ameliorate the cognitive dysfunctions in STZ-induced diabetic rat model.  相似文献   
989.
The control of chlorophyll (Chl) synthesis in angiosperms depends on the light-operating enzyme protochlorophyllide oxidoreductase (POR). The interruption of Chl synthesis during darkness requires suppression of the synthesis of 5-aminolevulinic acid (ALA), the first precursor molecule specific for Chl synthesis. The inactivation of glutamyl-tRNA reductase (GluTR), the first enzyme in tetrapyrrole biosynthesis, accomplished the decreased ALA synthesis by the membrane-bound protein FLUORESCENT (FLU) and prevents overaccumulation of protochlorophyllide (Pchlide) in the dark. We set out to elucidate the molecular mechanism of FLU-mediated inhibition of ALA synthesis, and explored the role of each of the three structural domains of mature FLU, the transmembrane, coiled-coil and tetratricopeptide repeat (TPR) domains, in this process. Efforts to rescue the FLU knock-out mutant with truncated FLU peptides revealed that, on its own, the TPR domain is insufficient to inactivate GluTR, although tight binding of the TPR domain to GluTR was detected. A truncated FLU peptide consisting of transmembrane and TPR domains also failed to inactivate GluTR in the dark. Similarly, suppression of ALA synthesis could not be achieved by combining the coiled-coil and TPR domains. Interaction studies revealed that binding of GluTR and POR to FLU is essential for inhibiting ALA synthesis. These results imply that all three FLU domains are required for the repression of ALA synthesis, in order to avoid the overaccumulation of Pchlide in the dark. Only complete FLU ensures the formation of a membrane-bound ternary complex consisting at least of FLU, GluTR and POR to repress ALA synthesis.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号