全文获取类型
收费全文 | 1736篇 |
免费 | 155篇 |
国内免费 | 5篇 |
专业分类
1896篇 |
出版年
2023年 | 8篇 |
2022年 | 22篇 |
2021年 | 36篇 |
2020年 | 14篇 |
2019年 | 14篇 |
2018年 | 41篇 |
2017年 | 20篇 |
2016年 | 37篇 |
2015年 | 84篇 |
2014年 | 80篇 |
2013年 | 111篇 |
2012年 | 117篇 |
2011年 | 111篇 |
2010年 | 73篇 |
2009年 | 84篇 |
2008年 | 108篇 |
2007年 | 85篇 |
2006年 | 83篇 |
2005年 | 87篇 |
2004年 | 89篇 |
2003年 | 92篇 |
2002年 | 77篇 |
2001年 | 14篇 |
1999年 | 18篇 |
1998年 | 27篇 |
1997年 | 16篇 |
1996年 | 8篇 |
1995年 | 17篇 |
1994年 | 10篇 |
1993年 | 13篇 |
1991年 | 15篇 |
1990年 | 11篇 |
1988年 | 8篇 |
1985年 | 9篇 |
1984年 | 9篇 |
1983年 | 9篇 |
1982年 | 14篇 |
1981年 | 11篇 |
1980年 | 8篇 |
1979年 | 8篇 |
1978年 | 12篇 |
1977年 | 13篇 |
1976年 | 10篇 |
1974年 | 7篇 |
1972年 | 7篇 |
1971年 | 11篇 |
1968年 | 13篇 |
1966年 | 8篇 |
1963年 | 7篇 |
1962年 | 8篇 |
排序方式: 共有1896条查询结果,搜索用时 15 毫秒
991.
Analysis of puff dynamics in oocytes: interdependence of puff amplitude and interpuff interval 下载免费PDF全文
Puffs are localized Ca(2+) signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP(3)). They are analogous to the sparks of myocytes and are believed to be the result of the liberation of Ca(2+) from the endoplasmic reticulum through the coordinated opening of IP(3) receptor/channels clustered at a functional release site. In this article, we analyze sequences of puffs that occur at the same site to help elucidate the mechanisms underlying puff dynamics. In particular, we show a dependence of the interpuff time on the amplitude of the preceding puff, and of the amplitude of the following puff on the preceding interval. These relationships can be accounted for by an inhibitory role of the Ca(2+) that is liberated during puffs. We construct a stochastic model for a cluster of IP(3) receptor/channels that quantitatively replicates the observed behavior, and we determine that the characteristic time for a channel to escape from the inhibitory state is of the order of seconds. 相似文献
992.
Role of phosphoinositide 3-kinase regulatory isoforms in development and actin rearrangement 总被引:5,自引:0,他引:5
Brachmann SM Yballe CM Innocenti M Deane JA Fruman DA Thomas SM Cantley LC 《Molecular and cellular biology》2005,25(7):2593-2606
Class Ia phosphoinositide 3-kinases (PI3Ks) are heterodimers of p110 catalytic and p85 regulatory subunits that mediate a variety of cellular responses to growth and differentiation factors. Although embryonic development is not impaired in mice lacking all isoforms of the p85alpha gene (p85alpha-/- p55alpha-/- p50alpha-/-) or in mice lacking the p85beta gene (p85beta-/-) (D. A. Fruman, F. Mauvais-Jarvis, D. A. Pollard, C. M. Yballe, D. Brazil, R. T. Bronson, C. R. Kahn, and L. C. Cantley, Nat Genet. 26:379-382, 2000; K. Ueki, C. M. Yballe, S. M. Brachmann, D. Vicent, J. M. Watt, C. R. Kahn, and L. C. Cantley, Proc. Natl. Acad. Sci. USA 99:419-424, 2002), we show here that loss of both genes results in lethality at embryonic day 12.5 (E12.5). The phenotypes of these embryos, including subepidermal blebs flanking the neural tube at E8 and bleeding into the blebs during the turning process, are similar to defects observed in platelet-derived growth factor receptor alpha null (PDGFRalpha-/-) mice (P. Soriano, Development 124:2691-2700, 1997), suggesting that PI3K is an essential mediator of PDGFRalpha signaling at this developmental stage. p85alpha-/- p55alpha+/+ p50alpha+/+ p85beta-/- mice had similar but less severe defects, indicating that p85alpha and p85beta have a critical and redundant function in development. Mouse embryo fibroblasts deficient in all p85alpha and p85beta gene products (p85alpha-/- p55alpha-/- p50alpha-/- p85beta-/-) are defective in PDGF-induced membrane ruffling. Overexpression of the Rac-specific GDP-GTP exchange factor Vav2 or reintroduction of p85alpha or p85beta rescues the membrane ruffling defect. Surprisingly, reintroduction of p50alpha also restored PDGF-dependent membrane ruffling. These results indicate that class Ia PI3K is critical for PDGF-dependent actin rearrangement but that the SH3 domain and the Rho/Rac/Cdc42-interacting domain of p85, which lacks p50alpha, are not required for this response. 相似文献
993.
Regulation of Rho and Rac signaling to the actin cytoskeleton by paxillin during Drosophila development 下载免费PDF全文
Chen GC Turano B Ruest PJ Hagel M Settleman J Thomas SM 《Molecular and cellular biology》2005,25(3):979-987
Paxillin is a prominent focal adhesion docking protein that regulates cell adhesion and migration. Although numerous paxillin-binding proteins have been identified and paxillin is required for normal embryogenesis, the precise mechanism by which paxillin functions in vivo has not yet been determined. We identified an ortholog of mammalian paxillin in Drosophila (Dpax) and have undertaken a genetic analysis of paxillin function during development. Overexpression of Dpax disrupted leg and wing development, suggesting a role for paxillin in imaginal disc morphogenesis. These defects may reflect a function for paxillin in regulation of Rho family GTPase signaling as paxillin interacts genetically with Rac and Rho in the developing eye. Moreover, a gain-of-function suppressor screen identified a genetic interaction between Dpax and cdi in wing development. cdi belongs to the cofilin kinase family, which includes the downstream Rho target, LIM kinase (LIMK). Significantly, strong genetic interactions were detected between Dpax and Dlimk, as well as downstream effectors of Dlimk. Supporting these genetic data, biochemical studies indicate that paxillin regulates Rac and Rho activity, positively regulating Rac and negatively regulating Rho. Taken together, these data indicate the importance of paxillin modulation of Rho family GTPases during development and identify the LIMK pathway as a critical target of paxillin-mediated Rho regulation. 相似文献
994.
Irene?Y. Y.?Szeto Sheila?C.?Barton E. B.?Keverne Azim?M.?SuraniEmail author 《Mammalian genome》2004,15(4):284-295
Peg3 is an imprinted gene exclusively expressed from the paternal allele. It encodes a C2H2 type zinc-finger protein and is involved in maternal behavior. It is important for TNF-NFkB signaling and p53-mediated apoptosis. To investigate the imprinting mechanism and gene expression of Peg3 and its neighboring gene(s), we used a 120 kb Peg3-containing BAC clone to generate transgenic mice. The BAC clone contains 20 kb of 5 and 80 kb of 3 flanking DNA, and we obtained three transgenic lines. In one of the lines harboring one copy of the transgene, Peg3 was imprinted properly. In the other two lines, Peg3 was expressed upon both maternal and paternal transmission. Imprinted expression was linked to the differential methylation of a region (DMR) upstream of the Peg3 gene. A second, maternally expressed gene, Zim1, present on the transgene was expressed irrespective of parental inheritance in all lines. These data suggest that, similar to other imprinted genes within domains, Peg3 and Zim1 are regulated by one or more elements lying at a distance from the genes. The imprinting of Peg3 seen in one line may reflect the presence of a responder sequence. Concerning the expression of the Peg3 transgene, we detected appropriate expression in the adult brain. However, this was not sufficient to rescue the maternal behavior phenotype seen in Peg3 deficient animals. 相似文献
995.
RNF5, a RING finger protein that regulates cell motility by targeting paxillin ubiquitination and altered localization 下载免费PDF全文
Didier C Broday L Bhoumik A Israeli S Takahashi S Nakayama K Thomas SM Turner CE Henderson S Sabe H Ronai Z 《Molecular and cellular biology》2003,23(15):5331-5345
RNF5 is a RING finger protein found to be important in the growth and development of Caenorhabditis elegans. The search for RNF5-associated proteins via a yeast two-hybrid screen identified a LIM-containing protein in C. elegans which shows homology with human paxillin. Here we demonstrate that the human homologue of RNF5 associates with the amino-terminal domain of paxillin, resulting in its ubiquitination. RNF5 requires intact RING and C-terminal domains to mediate paxillin ubiquitination. Whereas RNF5 mediates efficient ubiquitination of paxillin in vivo, protein extracts were required for in vitro ubiquitination, suggesting that additional modifications and/or an associated E3 ligase assist RNF5 targeting of paxillin ubiquitination. Mutant Ubc13 efficiently inhibits RNF5 ubiquitination, suggesting that RNF5 generates polychain ubiquitin of the K63 topology. Expression of RNF5 increases the cytoplasmic distribution of paxillin while decreasing its localization within focal adhesions, where it is primarily seen under normal growth. Concomitantly, RNF5 expression results in inhibition of cell motility. Via targeting of paxillin ubiquitination, which alters its localization, RNF5 emerges as a novel regulator of cell motility. 相似文献
996.
Lee AA Graham DA Dela Cruz S Ratcliffe A Karlon WJ 《Journal of biomechanical engineering》2002,124(1):37-43
The study objectives were to quantify the time- and magnitude-dependence of flow-induced alignment in vascular smooth muscle cells (SMC) and to identify pathways related to the orientation process. Using an intensity gradient method, we demonstrated that SMC aligned in the direction perpendicular to applied shear stress, which contrasts with parallel alignment of endothelial cells under flow SMC alignment varied with the magnitude of and exposure time to shear stress and is a continuous process that is dependent on calcium and cycloskeleton based mechanisms. A clear understanding and control of flow-induced SMC alignment will have implications for vascular tissue engineering. 相似文献
997.
H Minderman K Humphrey JK Arcadi A Wierzbicki O Maguire ES Wang AW Block SN Sait TC George PK Wallace 《Cytometry. Part A》2012,81(9):776-784
Cytogenetic abnormalities are important diagnostic and prognostic criteria for hematologic malignancies. Karyotyping and fluorescence in situ hybridization (FISH) are the conventional methods by which these abnormalities are detected. The sensitivity of these microscopy-based methods is limited by the abundance of the abnormal cells in the samples and therefore these analyses are commonly not applicable to minimal residual disease (MRD) stages. A flow cytometry-based imaging approach was developed to detect chromosomal abnormalities following FISH in suspension (FISH-IS), which enables the automated analysis of several log-magnitude higher number of cells compared with the microscopy-based approaches. This study demonstrates the applicability of FISH-IS for detecting numerical chromosome aberrations, establishes accuracy, and sensitivity of detection compared with conventional FISH, and feasibility to study procured clinical samples of acute myeloid leukemia (AML). Male and female healthy donor peripheral blood mononuclear cells hybridized with combinations of chromosome enumeration probes (CEP) 8, X, and Y served as models for disomy, monosomy, and trisomy. The sensitivity of detection of monosomies and trisomies amongst 20,000 analyzed cells was determined to be 1% with a high level of precision. A high correlation (R(2) = 0.99) with conventional FISH analysis was found based on the parallel analysis of diagnostic samples procured from 10 AML patients with trisomy 8 (+8). Additionally, FISH-IS analysis of samples procured at the time of clinical remission demonstrated the presence of residual +8 cells indicating that this approach may be used to detect MRD and associated chromosomal defects. ? 2012 International Society for Advancement of Cytometry. 相似文献
998.
Selective base excision repair of DNA damage by the non‐base‐flipping DNA glycosylase AlkC 下载免费PDF全文
Rongxin Shi Elwood A Mullins Xing‐Xing Shen Kori T Lay Philip K Yuen Sheila S David Antonis Rokas Brandt F Eichman 《The EMBO journal》2018,37(1):63-74
DNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT‐like repeat (HLR) fold. AlkD uses a unique non‐base‐flipping mechanism that enables excision of bulky lesions more commonly associated with nucleotide excision repair. In contrast, AlkC has a much narrower specificity for small lesions, principally N3‐methyladenine (3mA). Here, we describe how AlkC selects for and excises 3mA using a non‐base‐flipping strategy distinct from that of AlkD. A crystal structure resembling a catalytic intermediate complex shows how AlkC uses unique HLR and immunoglobulin‐like domains to induce a sharp kink in the DNA, exposing the damaged nucleobase to active site residues that project into the DNA. This active site can accommodate and excise N3‐methylcytosine (3mC) and N1‐methyladenine (1mA), which are also repaired by AlkB‐catalyzed oxidative demethylation, providing a potential alternative mechanism for repair of these lesions in bacteria. 相似文献
999.
Male sterility research has been directed toward two goals: identifying genes required for the pollen development pathway and, more practically, identifying genetically stable lines that can be used in hybrid seed-breeding programs. The present resurgence of interest in male sterility remains true to these goals, but in addition seeks a molecular understanding of pollen development in order to genetically engineer controllable male sterility for hybrid seed production. In this review, we discuss the genetic and histochemical studies of tomato male sterile mutants that were conducted prior to 1970 in the context of gene expression and interaction. We also examine the use of molecular biological techniques in recent studies of male sterility and report on the current strategies being used for hybrid seed production. 相似文献
1000.
Stefan Hiendleder Sheila M. Schmutz Georg Erhardt Ronnie D. Green Yves Plante 《Molecular reproduction and development》1999,54(1):24-31
To assess the extent of cytoplasmic genetic variability in cloned cattle produced by nuclear transplantation procedures, we investigated 29 individuals of seven male cattle clones (sizes 2–6) from two different commercial sources. Restriction enzyme and direct sequence analysis of mitochondrial DNA (mtDNA) detected a total of 12 different haplotypes. Transmitochondrial individuals (i.e., animals which share identical nuclei but have different mitochondrial DNA) were detected in all but one of the clones, demonstrating that mtDNA variation among cloned cattle is a very common phenomenon which prevents true genetic identity. The analyses also showed that the cytoplasmic genetic status of some investigated individuals and clones is further complicated by heteroplasmy (more than one mtDNA type in an individual). The relative proportions of different mtDNA‐types in two animals with mild heteroplasmy were estimated at 2:98% and 4:96% in DNA samples derived from blood. This is in agreement with values expected from karyoplast‐cytoplast volume ratios. In contrast, the mtDNA haplotype proportions observed in six other heteroplasmic animals of two different clones ranged from 21:79% to 57:43%, reflecting a marked increase in donor blastomere mtDNA contributions. These results suggest that mtDNA type of donor embryos and recipient oocytes used in nuclear transfer cattle cloning should be controlled to obtain true clones with identical nuclear and cytoplasmic genomes. Mol. Reprod. Dev. 54:24–31, 1999. © 1999 Wiley‐Liss, Inc. 相似文献