首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   856篇
  免费   53篇
  2022年   23篇
  2021年   30篇
  2020年   10篇
  2019年   17篇
  2018年   15篇
  2017年   17篇
  2016年   26篇
  2015年   41篇
  2014年   47篇
  2013年   53篇
  2012年   64篇
  2011年   54篇
  2010年   34篇
  2009年   39篇
  2008年   53篇
  2007年   38篇
  2006年   31篇
  2005年   27篇
  2004年   24篇
  2003年   26篇
  2002年   18篇
  2001年   22篇
  2000年   23篇
  1999年   17篇
  1998年   15篇
  1997年   9篇
  1996年   8篇
  1995年   8篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   7篇
  1990年   4篇
  1989年   8篇
  1988年   6篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   7篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   8篇
  1975年   3篇
  1971年   4篇
  1965年   2篇
排序方式: 共有909条查询结果,搜索用时 15 毫秒
821.
822.
823.
824.
Renal cell carcinoma without metastasis responds well to surgical excision but is known to recur postnephrectomy. In a small but significant number of patients this recurrence is not accompanied by metastasis, which is important as these people benefit from further surgery. We examined 20 articles from the current literature to ascertain how best to treat this condition. Surgical management renders better results than conservative or medical therapies. Readily available investigations such as blood tests and computed tomography can help determine the right patients for surgery in an evidence-based fashion. Current findings have allowed us to suggest a protocol for the treatment of solitary renal fossa recurrence of postnephrectomy renal cell carcinoma. There are further opportunities for study in validating our protocol, and in novel renal cell carcinoma treatment strategies that have not been tested on solitary renal fossa recurrences.Key words: Renal cancer, Recurrence, Nephrectomy, Complications, ManagementKidney cancers represent 2% of cancers worldwide; the most common type is renal cell carcinoma. Curative treatment of localized disease is a nephrectomy. Following surgery, recurrence can happen locally with an incidence of 1.61%.15 A solitary renal fossa local recurrence is rare but important to distinguish from local recurrence with metastasis, which would not benefit from surgical resection. The 5-year survival postresection of local recurrence for those without metastasis compared with those with metastasis was 62% compared with 0%.4 The kidneys are bordered by the colon, spleen, liver, stomach, and associated neurovascular structures, all of which may be invaded in this form of recurrence; specific morbidity is related to the invasion and subsequent resection of these organs. General morbidity is caused by the surgery itself, with pain, infection, and hemorrhage being major contributors (Figure 1). This article explains predictive factors in recurrence, useful diagnostic modalities, and management, and provides recommendations and highlights opportunities for further study.Open in a separate windowFigure 1Computed tomography image of a patient with renal fossa recurrence of renal cancer after nephrectomy. Of note is the large mass identifiable in the spleen.  相似文献   
825.
Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9), lapachol (10), nor-lapachol (11), iso-lapachol (12), phthiocol (13) and phenazines (12-20). Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2), indicated by their low inhibitory concentration for 50% (IC50) of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study.  相似文献   
826.
827.
A side effect of radiation therapy in the head and neck region is injury to surrounding healthy tissues such as irreversible impaired function of the salivary glands. Hyperbaric oxygen therapy (HBOT) is clinically used to treat radiation-induced damage but its mechanism of action is largely unknown. In this study, we investigated the molecular pathways that are affected by HBOT in mouse salivary glands two weeks after radiation therapy by microarray analysis. Interestingly, HBOT led to significant attenuation of the radiation-induced expression of a set of genes and upstream regulators that are involved in processes such as fibrosis and tissue regeneration. Our data suggest that the TGFβ-pathway, which is involved in radiation-induced fibrosis and chronic loss of function after radiation therapy, is affected by HBOT. On the longer term, HBOT reduced the expression of the fibrosis-associated factor α-smooth muscle actin in irradiated salivary glands. This study highlights the potential of HBOT to inhibit the TGFβ-pathway in irradiated salivary glands and to restrain consequential radiation induced tissue injury.  相似文献   
828.
The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex “mitochondrial contact site and cristae organizing system” and its subunits Mic10 to Mic60.Mitochondria possess two membranes of different architecture and function (Palade, 1952; Hackenbrock, 1968). Both membranes work together for essential shared functions, such as protein import (Schatz, 1996; Neupert and Herrmann, 2007; Chacinska et al., 2009). The outer membrane harbors machinery that controls the shape of the organelle and is crucial for the communication of mitochondria with the rest of the cell. The inner membrane harbors the complexes of the respiratory chain, the F1Fo-ATP synthase, numerous metabolite carriers, and enzymes of mitochondrial metabolism. It consists of two domains: the inner boundary membrane, which is adjacent to the outer membrane, and invaginations of different shape, termed cristae (Werner and Neupert, 1972; Frey and Mannella, 2000; Hoppins et al., 2007; Pellegrini and Scorrano, 2007; Zick et al., 2009; Davies et al., 2011). Tubular openings, termed crista junctions (Perkins et al., 1997), connect inner boundary membrane and cristae membranes (Fig. 1, A and B). Respiratory chain complexes and the F1Fo-ATP synthase are preferentially located in the cristae membranes, whereas preprotein translocases are enriched in the inner boundary membrane (Vogel et al., 2006; Wurm and Jakobs, 2006; Davies et al., 2011). Contact sites between outer membrane and inner boundary membrane promote import of preproteins, metabolite channeling, lipid transport, and membrane dynamics (Frey and Mannella, 2000; Sesaki and Jensen, 2004; Hoppins et al., 2007, 2011; Neupert and Herrmann, 2007; Chacinska et al., 2009; Connerth et al., 2012; van der Laan et al., 2012).Open in a separate windowFigure 1.MICOS complex. (A) The MICOS complex (hypothetical model), previously also termed MINOS, MitOS, or Mitofilin/Fcj1 complex, is required for maintenance of the characteristic architecture of the mitochondrial inner membrane (IM) and forms contact sites with the outer membrane (OM). In budding yeast, six subunits of MICOS have been identified. All subunits are exposed to the intermembrane space (IMS), five are integral inner membrane proteins (Mic10, Mic12, Mic26, Mic27, and Mic60), and one is a peripheral inner membrane protein (Mic19). Mic26 is related to Mic27; however, mic26Δ yeast cells show considerably less severe defects of mitochondrial inner membrane architecture than mic27Δ cells (Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011). The MICOS complex of metazoa additionally contains Mic25, which is related to Mic19, yet subunits corresponding to Mic12 and Mic26 have not been identified so far. MICOS subunits that have been conserved in most organisms analyzed are indicated by bold boundary lines. (B, top) Wild-type architecture of the mitochondrial inner membrane with crista junctions and cristae. (bottom) This architecture is considerably altered in micos mutant mitochondria: most cristae membranes are detached from the inner boundary membrane and form internal membrane stacks. In some micos mutants (deficiency of mammalian Mic19 or Mic25), a loss of cristae membranes was observed (Darshi et al., 2011; An et al., 2012). Figure by M. Bohnert (Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany).To understand the complex architecture of mitochondria, it will be crucial to identify the molecular machineries that control the interaction between mitochondrial outer and inner membranes and the characteristic organization of the inner membrane. A convergence of independent studies led to the identification of a large heterooligomeric protein complex of the mitochondrial inner membrane conserved from yeast to humans that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (Fig. 1 A). Several names were used by different research groups to describe the complex, including mitochondrial contact site (MICOS) complex, mitochondrial inner membrane organizing system (MINOS), mitochondrial organizing structure (MitOS), Mitofilin complex, or Fcj1 (formation of crista junction protein 1) complex (Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012). Mitofilin, also termed Fcj1, was the first component identified (Icho et al., 1994; Odgren et al., 1996; Gieffers et al., 1997; John et al., 2005) and was observed enriched at crista junctions (Rabl et al., 2009). Mutants of Mitofilin/Fcj1 as well as of other MICOS/MINOS/MitOS subunits show a strikingly altered inner membrane architecture. They lose crista junctions and contain large internal membrane stacks, the respiratory activity is reduced, and mitochondrial DNA nucleoids are altered (Fig. 1 B; John et al., 2005; Hess et al., 2009; Rabl et al., 2009; Mun et al., 2010; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013). It has been reported that the complex interacts with a variety of outer membrane proteins, such as channel proteins and components of the protein translocases and mitochondrial fusion machines, and defects impair the biogenesis of mitochondrial proteins (Xie et al., 2007; Darshi et al., 2011; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Körner et al., 2012; Ott et al., 2012; Zerbes et al., 2012; Jans et al., 2013; Weber et al., 2013). The MICOS/MINOS/MitOS/Mitofilin/Fcj1 complex thus plays crucial roles in mitochondrial architecture, dynamics, and biogenesis. However, communication of results in this rapidly developing field has been complicated by several different nomenclatures used for the complex as well as for its subunits (
Standard nameFormer namesYeast ORFReferences
Complex
MICOSMINOS, MitOS, MIB, Mitofilin complex, and Fcj1 complexXie et al., 2007; Rabl et al., 2009; Darshi et al., 2011; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Ott et al., 2012; Jans et al., 2013; Weber et al., 2013
Subunits
Mic10Mcs10, Mio10, Mos1, and MINOS1YCL057C-AHarner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013; Jans et al., 2013; Varabyova et al., 2013
Mic12Aim5, Fmp51, and Mcs12YBR262CHess et al., 2009; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Varabyova et al., 2013
Mic19Aim13, Mcs19, CHCH-3, CHCHD3, and MINOS3YFR011CXie et al., 2007; Hess et al., 2009; Darshi et al., 2011; Head et al., 2011; Alkhaja et al., 2012; Ott et al., 2012; Jans et al., 2013; Varabyova et al., 2013
Mic25 (metazoan Mic19 homologue)CHCHD6 and CHCM1Xie et al., 2007; An et al., 2012
Mic26Mcs29, Mio27, and Mos2YGR235CHarner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011
Mic27Aim37, Mcs27, APOOL, and MOMA-1YNL100WHess et al., 2009; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Weber et al., 2013
Mic60Fcj1, Aim28, Fmp13, Mitofilin, HMP, IMMT, and MINOS2YKR016WIcho et al., 1994; Odgren et al., 1996; Gieffers et al., 1997; John et al., 2005; Wang et al., 2008; Rabl et al., 2009; Rossi et al., 2009; Mun et al., 2010; Park et al., 2010; Körner et al., 2012; Zerbes et al., 2012; Itoh et al., 2013; Varabyova et al., 2013
Open in a separate windowAPOOL, apolipoprotein O–like; HMP, heart muscle protein; IMMT, inner mitochondrial membrane protein; MIB, mitochondrial intermembrane space bridging.To rectify this situation, all authors of this article have agreed on a new uniform nomenclature with the following guidelines. (a) The complex will be called “mitochondrial contact site and cristae organizing system” (MICOS). The protein subunits of MICOS are named Mic10 to Mic60 as listed in Gabriel et al., 2007; Vögtle et al., 2012) will be changed to Mix14, Mix17, and Mix23 (mitochondrial intermembrane space CXnC motif proteins) in the Saccharomyces Genome Database, and the new nomenclature will be used for orthologues identified in other organisms.The MICOS complex is of central importance for the maintenance of mitochondrial inner membrane architecture and the formation of contact sites between outer and inner membranes and thus is involved in the regulation of mitochondrial dynamics, biogenesis, and inheritance. We expect that the uniform nomenclature will facilitate future studies on mitochondrial membrane architecture and dynamics.  相似文献   
829.
In vitro free radical scavenging activity of hepatic metallothionein induced in an Indian freshwater fish, Channa punctata Bloch     
Atif F  Kaur M  Yousuf S  Raisuddin S 《Chemico-biological interactions》2006,162(2):172-180
Mammalian metallothioneins (MT) have been reported to scavenge free radicals. There is no experimental evidence to show that fish MT has a similar property. In the present study cadmium-induced MT (Cd-MT) from the liver of an Indian freshwater fish Channa punctata Bloch was investigated for its free radical scavenging activity using three different in vitro assays. Exposure to cadmium chloride (0.2 mg/kg body weight; three doses on alternate days) resulted in a marked induction of Cd-MT in liver. Only a single isoform of Cd-MT was found to be induced. Molecular weight of Cd-MT was found to be 14 kDa as deduced by SDS-PAGE analysis. The purified Cd-MT effectively scavenged the following free radicals: superoxide radical (O2*-), 2,2'-azinobis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS*+) and 1,1-diphenyl-picrylhydrazyl radical (DPPH*). The radical scavenging effect was found to be concentration-dependent. Also, the purified MT exhibited an inhibitory effect on ferric nitrilotriacetate (Fe-NTA) induced oxidative DNA damage in vitro. The cysteine residues of MT are proposed to be the main candidate for its radical scavenging activity. Findings of the present study strongly suggest a free radical scavenging role for fish MT. Present study adds to the little existing knowledge about fish MT and its possible biological functions.  相似文献   
830.
Constitutive homo- and hetero-oligomerization of TbetaRII-B, an alternatively spliced variant of the mouse TGF-beta type II receptor     
Krishnaveni MS  Hansen JL  Seeger W  Morty RE  Sheikh SP  Eickelberg O 《Biochemical and biophysical research communications》2006,351(3):651-657
Transforming growth factor (TGF)-beta ligands signal through transmembrane type I and type II serine/threonine kinase receptors, which form heteromeric signalling complexes upon ligand binding. Type II TGF-beta receptors (TbetaRII) are reported to exist as homodimers at the cell surface, but the oligomerization pattern and dynamics of TbetaRII splice variants in live cells has not been demonstrated thus far. Using co-immunoprecipitation and bioluminescence resonance energy transfer (BRET), we demonstrate that the mouse TbetaRII receptor splice variant TbetaRII-B is capable of forming ligand-independent homodimers and heterodimers with TbetaRII. The homomeric interaction of mouse (m)TbetaRII-B isoforms, however, is less robust than the heteromeric interactions of mTbetaRII-B with wild-type TbetaRII, which indicates that these receptors may be more likely to heterodimerize when both receptors are expressed. Moreover, we demonstrate that mTbetaRII-B is a signalling receptor with ubiquitous tissue expression. Our study thus demonstrates previously unappreciated complex formation of TGF-beta type II receptors, and suggests that mTbetaRII-B can direct TGF-beta-induced signalling in vitro and in vivo.  相似文献   
[首页] « 上一页 [78] [79] [80] [81] [82] 83 [84] [85] [86] [87] [88] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号