首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   657篇
  免费   36篇
  2022年   18篇
  2021年   27篇
  2020年   10篇
  2019年   16篇
  2018年   14篇
  2017年   12篇
  2016年   23篇
  2015年   30篇
  2014年   32篇
  2013年   36篇
  2012年   48篇
  2011年   46篇
  2010年   27篇
  2009年   26篇
  2008年   43篇
  2007年   29篇
  2006年   19篇
  2005年   19篇
  2004年   19篇
  2003年   21篇
  2002年   16篇
  2001年   12篇
  2000年   14篇
  1999年   13篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1993年   3篇
  1992年   5篇
  1991年   7篇
  1990年   4篇
  1989年   7篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1982年   6篇
  1981年   4篇
  1980年   5篇
  1978年   4篇
  1977年   3篇
  1976年   6篇
  1975年   3篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1968年   2篇
  1965年   2篇
排序方式: 共有693条查询结果,搜索用时 639 毫秒
381.
Tamoxifen (TAM) is a nonsteroidal triphenylethylene antiestrogenic drug widely used in the treatment and prevention of breast cancer. TAM brings about a collapse of the mitochondrial membrane potential. It acts both as an uncoupling agent and as a powerful inhibitor of mitochondrial electron transport chain. The effect of catechin pretreatment on the mitochondrial toxicity of TAM was studied in liver mitochondria of Swiss albino mice. TAM treatment caused a significant increase in the mitochondrial lipid peroxidation (LPO) and the protein carbonyls (PCs). It also caused a significant increase in superoxide radical production. Pretreatment of mice with catechin (40 mg/kg) showed significant protection as demonstrated by marked attenuation of increased oxidative stress parameters such LPO, PCs, and superoxide production. It also restored the decreased nonenzymatic and enzymatic antioxidants of mitochondria. The inhibitory effect of catechin on TAM-:induced oxidative damage suggests that it may have potential benefits in prevention of human diseases where reactive oxygen species have some role as causative agents.  相似文献   
382.
383.
Patients with inherited retinal dystrophies (IRDs) were recruited from two understudied populations: Mexico and Pakistan as well as a third well-studied population of European Americans to define the genetic architecture of IRD by performing whole-genome sequencing (WGS). Whole-genome analysis was performed on 409 individuals from 108 unrelated pedigrees with IRDs. All patients underwent an ophthalmic evaluation to establish the retinal phenotype. Although the 108 pedigrees in this study had previously been examined for mutations in known IRD genes using a wide range of methodologies including targeted gene(s) or mutation(s) screening, linkage analysis and exome sequencing, the gene mutations responsible for IRD in these 108 pedigrees were not determined. WGS was performed on these pedigrees using Illumina X10 at a minimum of 30X depth. The sequence reads were mapped against hg19 followed by variant calling using GATK. The genome variants were annotated using SnpEff, PolyPhen2, and CADD score; the structural variants (SVs) were called using GenomeSTRiP and LUMPY. We identified potential causative sequence alterations in 61 pedigrees (57%), including 39 novel and 54 reported variants in IRD genes. For 57 of these pedigrees the observed genotype was consistent with the initial clinical diagnosis, the remaining 4 had the clinical diagnosis reclassified based on our findings. In seven pedigrees (12%) we observed atypical causal variants, i.e. unexpected genotype(s), including 4 pedigrees with causal variants in more than one IRD gene within all affected family members, one pedigree with intrafamilial genetic heterogeneity (different affected family members carrying causal variants in different IRD genes), one pedigree carrying a dominant causative variant present in pseudo-recessive form due to consanguinity and one pedigree with a de-novo variant in the affected family member. Combined atypical and large structural variants contributed to about 20% of cases. Among the novel mutations, 75% were detected in Mexican and 50% found in European American pedigrees and have not been reported in any other population while only 20% were detected in Pakistani pedigrees and were not previously reported. The remaining novel IRD causative variants were listed in gnomAD but were found to be very rare and population specific. Mutations in known IRD associated genes contributed to pathology in 63% Mexican, 60% Pakistani and 45% European American pedigrees analyzed. Overall, contribution of known IRD gene variants to disease pathology in these three populations was similar to that observed in other populations worldwide. This study revealed a spectrum of mutations contributing to IRD in three populations, identified a large proportion of novel potentially causative variants that are specific to the corresponding population or not reported in gnomAD and shed light on the genetic architecture of IRD in these diverse global populations.  相似文献   
384.
BACKGROUND: Fine needle aspiration cytology (FNAC) of extranodal non-Hodgkin's lymphoma of the tongue has rarely been described. CASE: A 47-year-old male was referred to the cytology laboratory for FNAC of a 3-cm-diameter swelling on the dorsum of the tongue, with a primary clinical diagnosis of soft tissue tumor. FNAC smears showed discrete, monomorphic, round to oval cells with scanty, deep blue cytoplasm. The nuclear margin was regular, with occasional prominent nucleoli and fine nuclear chromatin. The background showed many lymphoglandular bodies. The cells were strongly positive for leukocyte common antigen. A cytologic diagnosis of high grade non-Hodgkin's (NHL) was offered and subsequently confirmed by histopathology. CONCLUSION: Primary NHL of the tongue is relatively rare. As there are no characteristic clinical features of extranodal NHL of the tongue, FNAC may be useful for rapid diagnosis and management of such cases.  相似文献   
385.
Hormones and sensory stimuli activate serpentine receptors, transmembrane switches that relay signals to heterotrimeric guanine nucleotide-binding proteins (G proteins). To understand the switch mechanism, we subjected 93 amino acids in transmembrane helices III, V, VI, and VII of the human chemoattractant C5a receptor to random saturation mutagenesis. A yeast selection identified 121 functioning mutant receptors, containing a total of 523 amino acid substitutions. Conserved hydrophobic residues are located on helix surfaces that face other helices in a modeled seven-helix bundle (Baldwin, J. M., Schertler, G. F., and Unger, V. M. (1997) J. Mol. Biol. 272, 144-164), whereas surfaces predicted to contact the surrounding lipid tolerate many substitutions. Our analysis identified 25 amino acid positions resistant to nonconservative substitutions. These appear to comprise two distinct components of the receptor switch, a surface at or near the extracellular membrane interface and a core cluster in the cytoplasmic half of the bundle. Twenty-one of the 121 mutant receptors exhibit constitutive activity. Amino acids substitutions in these activated receptors predominate in helices III and VI; other activating mutations truncate the receptor near the extracellular end of helix VI. These results identify key elements of a general mechanism for the serpentine receptor switch.  相似文献   
386.
387.
Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. BTBR mouse is currently used as a model for understanding mechanisms that may be responsible for the pathogenesis of autism. Growing evidence suggests that Ras/Raf/ERK1/2 signaling plays death-promoting apoptotic roles in neural cells. Recent studies showed a possible association between neural cell death and autism. In addition, two studies reported that a deletion of a locus on chromosome 16, which includes the MAPK3 gene that encodes ERK1, is associated with autism. We thus hypothesized that Ras/Raf/ERK1/2 signaling could be abnormally regulated in the brain of BTBR mice that models autism. In this study, we show that expression of Ras protein was significantly elevated in frontal cortex and cerebellum of BTBR mice as compared with B6 mice. The phosphorylations of A-Raf, B-Raf and C-Raf were all significantly increased in frontal cortex of BTBR mice. However, only C-Raf phosphorylation was increased in the cerebellum of BTBR mice. In addition, we further detected that the activities of both MEK1/2 and ERK1/2, which are the downstream kinases of Ras/Raf signaling, were significantly enhanced in the frontal cortex. We also detected that ERK1/2 is significantly over-expressed in frontal cortex of autistic subjects. Our results indicate that Ras/Raf/ERK1/2 signaling is upregulated in the frontal cortex of BTBR mice that model autism. These findings, together with the enhanced ERK1/2 expression in autistic frontal cortex, imply that Ras/Raf/ERK1/2 signaling activities could be increased in autistic brain and involved in the pathogenesis of autism.  相似文献   
388.
Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. A number of studies have shown that the Ras/Raf/ERK1/2 (extracellular signal-regulated kinase) signaling pathway plays important roles in the genesis of neural progenitors, learning and memory. Ras/Raf/ERK1/2 and ERK5 have also been shown to have death-promoting apoptotic roles in neural cells. Recent studies have shown a possible association between neural cell death and autism. In addition, two recent studies reported that a deletion of a locus on chromosome 16, which included the mitogen-activated protein kinase 3 (MAPK3) gene that encodes ERK1, is associated with autism. Most recently, our laboratory detected that Ras/Raf/ERK1/2 signaling activities were significantly enhanced in the brain of BTBR mice that model autism, as they exhibit many autism-like behaviors. We thus hypothesized that Ras/Raf/ERK1/2 signaling and ERK5 could be abnormally regulated in the brain of autistic subjects. In this study, we show that the expression of Ras protein was significantly elevated in the frontal cortex of autistic subjects. C-Raf phosphorylation was increased in the frontal cortex, while both C-Raf and A-Raf activities were enhanced in the cerebellum of autistic subjects. We also detected that both the protein expression and activities of ERK1/2 were significantly upregulated in the frontal cortex of autistic subjects, but not in the cerebellum. Furthermore, we showed that ERK5 protein expression is upregulated in both frontal cortex and cerebellum of autistic subjects. These results suggest that the upregulation of Ras/Raf/ERK1/2 signaling and ERK5 activities mainly found in the frontal cortex of autistic subjects may be critically involved in the pathogenesis of autism.  相似文献   
389.
Hepatocellular carcinoma (HCC), a leading cause of cancer related deaths is predominantly driven by chronic inflammatory responses. Due to asymptomatic nature and lack of early patient biopsies, precise involvement of inflammation in hepatic injury initiation remains unidentified. Aim of the study was to elucidate the regulation patterns of inflammatory signalling from initiation of hepatic injury to development of HCC. HCC mice model was established using DEN followed by repeated doses of CCl4 and sacrificed at three different stages of disease comprising 7, 14 and 21 weeks. Serum biochemical tests, hepatic lipids quantification, histopathology and qPCR analyses were conducted to characterize the initiation and progression of liver injury and inflammatory signalling. Notably, at 7 weeks, we observed hepatocyte damage and periportal necrotic bodies coupled with induction of Socs2/Socs3 and anti-inflammatory cytokine Il-10. At 14 weeks, mice liver showed advancement of liver injury with micro-vesicular steatosis and moderate collagen deposition around portal zone. With progression of injury, the expression of Socs3 was declined with further reduction of Il-10 and Tgf-β indicating the disturbance of anti-inflammatory mechanism. In contrast, pro-inflammatory cytokines Il1-β, Il6 and Tnf-α were upregulated contributing inflammation. Subsequently, at 21 weeks severe liver damage was estimated as characterized by macro-vesicular steatosis, perisinusoidal collagen bridging, immune cell recruitment and significant upregulation of Col-1α and α-Sma. In parallel, there was significant upregulation of pro/anti-inflammatory cytokines highlighting the commencement of chronic inflammation.Findings of the study suggest that differential regulation of cytokine suppressors and inflammatory cytokines might play role in the initiation and progression of hepatic injury leading towards HCC.  相似文献   
390.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号