首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1292篇
  免费   122篇
  国内免费   2篇
  2021年   24篇
  2020年   6篇
  2019年   22篇
  2018年   14篇
  2017年   21篇
  2016年   24篇
  2015年   45篇
  2014年   54篇
  2013年   67篇
  2012年   104篇
  2011年   87篇
  2010年   75篇
  2009年   47篇
  2008年   63篇
  2007年   60篇
  2006年   54篇
  2005年   57篇
  2004年   47篇
  2003年   38篇
  2002年   52篇
  2001年   33篇
  2000年   34篇
  1999年   30篇
  1998年   6篇
  1997年   11篇
  1996年   9篇
  1995年   8篇
  1994年   15篇
  1993年   10篇
  1992年   24篇
  1991年   20篇
  1990年   25篇
  1989年   24篇
  1988年   21篇
  1987年   18篇
  1986年   19篇
  1985年   21篇
  1984年   14篇
  1983年   8篇
  1982年   10篇
  1981年   5篇
  1980年   8篇
  1979年   6篇
  1978年   9篇
  1977年   7篇
  1976年   10篇
  1975年   8篇
  1974年   7篇
  1970年   4篇
  1969年   4篇
排序方式: 共有1416条查询结果,搜索用时 15 毫秒
151.
152.
The pathological hallmark of Alzheimer disease is the senile plaque principally composed of tightly aggregated amyloid-beta fibrils (fAbeta), which are thought to be resistant to degradation and clearance. In this study, we explored whether proteases capable of degrading soluble Abeta (sAbeta) could degrade fAbeta as well. We demonstrate that matrix metalloproteinase-9 (MMP-9) can degrade fAbeta and that this ability is not shared by other sAbeta-degrading enzymes examined, including endothelin-converting enzyme, insulin-degrading enzyme, and neprilysin. fAbeta was decreased in samples incubated with MMP-9 compared with other proteases, assessed using thioflavin-T. Furthermore, fAbeta breakdown with MMP-9 but not with other proteases was demonstrated by transmission electron microscopy. Proteolytic digests of purified fAbeta were analyzed with matrix-assisted laser desorption ionization time-of-flight mass spectrometry to identify sites of Abeta that are cleaved during its degradation. Only MMP-9 digests contained fragments (Abeta(1-20) and Abeta(1-30)) from fAbeta(1-42) substrate; the corresponding cleavage sites are thought to be important for beta-pleated sheet formation. To determine whether MMP-9 can degrade plaques formed in vivo, fresh brain slices from aged APP/PS1 mice were incubated with proteases. MMP-9 digestion resulted in a decrease in thioflavin-S (ThS) staining. Consistent with a role for endogenous MMP-9 in this process in vivo, MMP-9 immunoreactivity was detected in astrocytes surrounding amyloid plaques in the brains of aged APP/PS1 and APPsw mice, and increased MMP activity was selectively observed in compact ThS-positive plaques. These findings suggest that MMP-9 can degrade fAbeta and may contribute to ongoing clearance of plaques from amyloid-laden brains.  相似文献   
153.
BACKGROUND: Malignant pleural mesothelioma (MPM) is an aggressive cancer that is refractory to current treatment modalities. Oncolytic herpes simplex viruses (HSV) used for gene therapy are genetically engineered, replication-competent viruses that selectively target tumor cells while sparing normal host tissue. The localized nature, the potential accessibility and the relative lack of distant metastasis make MPM a particularly suitable disease for oncolytic viral therapy. METHODS: The infectivity, selective replication, vector spread and cytotoxic ability of three oncolytic HSV: G207, NV1020 and NV1066, were tested against eleven pathological types of MPM cell lines including those that are resistant to radiation therapy, gemcitabine or cisplatin. The therapeutic efficacy and the effect on survival of NV1066 were confirmed in a murine MPM model. RESULTS: All three oncolytic HSV were highly effective against all the MPM cell lines tested. Even at very low concentrations of MOI 0.01 (MOI: multiplicity of viral infection, ratio of viral particles per cancer cell), HSV were highly effective against MPM cells that are resistant to radiation, gemcitabine and cisplatin. NV1066, an oncolytic HSV that expresses green fluorescent protein (GFP), was able to delineate the extent of the disease in a murine model of MPM due to selective infection and expression of GFP in tumor cells. Furthermore, NV1066 was able to reduce the tumor burden and prolong survival even when treatment was at an advanced stage of the disease. CONCLUSION: These findings support the continued investigation of oncolytic HSV as potential therapy for patients with therapy-resistant MPM.  相似文献   
154.
In a search for potential ethanologens, waste compost was screened for ethanol-tolerant thermophilic microorganisms. Two thermophilic bacterial strains, M5EXG and M10EXG, with tolerance of 5 and 10% (v/v) ethanol, respectively, were isolated. Both isolates are facultative anaerobic, non-spore forming, non-motile, catalase-positive, oxidase-negative, Gram-negative rods that are capable of utilizing a range of carbon sources including arabinose, galactose, mannose, glucose and xylose and produce low amounts of ethanol, acetate and lactate. Growth of both isolates was observed in fully defined minimal media within the temperature range 50–80°C and pH 6.0–8.0. Phylogenetic analysis of the 16S rDNA sequences revealed that both isolates clustered with members of subgroup 5 of the genus Bacillus. G+C contents and DNA–DNA relatedness of M5EXG and M10EXG revealed that they are strains belonging to Geobacillus thermoglucosidasius. However, physiological and biochemical differences were evident when isolates M5EXG and M10EXG were compared with G. thermoglucosidasius type strain (DSM 2542T). The new thermophilic, ethanol-tolerant strains of G. thermoglucosidasius may be candidates for ethanol production at elevated temperatures.  相似文献   
155.
156.
The twin arginine transport (Tat) system translocates folded proteins across the bacterial inner membrane. Transport substrates are recognized by means of evolutionarily well-conserved N-terminal signal peptides. The precise role of signal peptides in the actual transport process is not yet fully understood. Potentially, much insight into the molecular details of the transport process could be gained from step-by-step in vitro experiments under controlled conditions. Here, we employ purified preproteins to study their interaction with the phospholipid membrane by using surface plasmon resonance spectroscopy. It turns out that preproteins interact tightly with a model membrane consisting of only phospholipids. This interaction, which is stabilized by both electrostatic and hydrophobic contributions, appears to constitute an early step in protein translocation by the Tat system.  相似文献   
157.
158.
Melanin-concentrating hormone (MCH) is a neuropeptide that acts to increase feeding behavior and decrease energy expenditure. The role of MCH in central cardiorespiratory regulation is still poorly understood. Experiments were conducted on urethane-anesthetized, vagotomized, and artificially ventilated male Sprague-Dawley rats (n = 22) to ascertain whether MCH modulates sympathetic vasomotor tone, as well as barosympathetic, chemosympathetic, and somatosympathetic reflexes at the level of the spinal cord. Intrathecal injection of 10 μl of MCH produced a dose-dependent hypotension, bradycardia, and sympathoinhibition. Peak response was observed following administration of 1 mM MCH, causing a decrease in mean arterial pressure of 39 ± 2 mmHg (P < 0.001), splanchnic sympathetic nerve activity of 78 ± 11% (P < 0.001), and heart rate of 87 ± 11 beats per minute (bpm) (P < 0.01). The two peaks of the somatosympathetic reflex were decreased by intrathecal MCH, 7 ± 3% (P < 0.01) and 31 ± 6% (P < 0.01), respectively, and the spinal component of the reflex was accentuated 96 ± 23% (P < 0.05), with respect to the baseline for MCH, compared with the two peaks and spinal component of the somatosympathetic reflex elicited following saline injection with respect to the baseline for saline. MCH decreased the sympathetic gain to 120 s of hyperoxic hypercapnea (10% CO(2) in 90% O(2)) and to 10-12 s poikilocapneic anoxia (100% N(2)) from 0.74 ± 0.14%/s to 0.23 ± 0.04%/s (P < 0.05) and 16.47 ± 3.2% to 4.35 ± 1.56% (P < 0.05), respectively. There was a 34% decrease in gain and a 62% decrease in range of the sympathetic baroreflex with intrathecal MCH. These data demonstrate that spinal MCH blunts the central regulation of sympathetic tone and adaptive sympathetic reflexes.  相似文献   
159.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. CCN6 is a cysteine-rich protein that belongs to the CCN (Cyr61, CTGF, and Nov) family of matricellular proteins. However, the effects of CCN6 on human chondrosarcoma cells are largely unknown. In this study, we found that CCN6 increased the migration and the expression of intercellular adhesion molecule-1 (ICAM-1) in human chondrosarcoma cells. αvβ3 and αvβ5 integrin monoclonal antibody and mitogen-activated protein kinase (MEK) inhibitors (PD98059 and U0126) inhibited the CCN6-induced increase of the migration and ICAM-1 up-regulation of chondrosarcoma cells. CCN6 stimulation increased the phosphorylation of focal adhesion kinase (FAK), MEK, and extracellular signal-regulated kinase (ERK). In addition, activator protein-1 (AP-1) inhibitors suppressed the cell migration and ICAM-1 expression enhanced by CCN6. Moreover, CCN6 increased AP-1 luciferase activity and binding of c-Jun to the AP-1 element on the ICAM-1 promoter. Taken together, our results indicate that CCN6 enhances the migration of chondrosarcoma cells by increasing ICAM-1 expression through the αvβ3 and αvβ5 integrin receptor, FAK, MEK, ERK, c-Jun, and AP-1 signal transduction pathway.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号