首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16405篇
  免费   1250篇
  国内免费   1187篇
  2024年   31篇
  2023年   195篇
  2022年   514篇
  2021年   939篇
  2020年   568篇
  2019年   760篇
  2018年   758篇
  2017年   557篇
  2016年   786篇
  2015年   1036篇
  2014年   1287篇
  2013年   1413篇
  2012年   1506篇
  2011年   1364篇
  2010年   826篇
  2009年   742篇
  2008年   843篇
  2007年   702篇
  2006年   561篇
  2005年   503篇
  2004年   417篇
  2003年   362篇
  2002年   268篇
  2001年   250篇
  2000年   222篇
  1999年   231篇
  1998年   158篇
  1997年   135篇
  1996年   121篇
  1995年   110篇
  1994年   103篇
  1993年   87篇
  1992年   102篇
  1991年   100篇
  1990年   53篇
  1989年   55篇
  1988年   41篇
  1987年   32篇
  1986年   22篇
  1985年   27篇
  1984年   23篇
  1983年   15篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
211.
Although aging and senescence have been extensively studied in the past few decades, however, there is lack of clinical treatment available for anti‐aging. This study presents the effects of berberine (BBR) on the aging process resulting in a promising extension of lifespan in model organisms. BBR extended the replicative lifespan, improved the morphology, and boosted rejuvenation markers of replicative senescence in human fetal lung diploid fibroblasts (2BS and WI38). BBR also rescued senescent cells with late population doubling (PD). Furthermore, the senescence‐associated β‐galactosidase (SA‐β‐gal)‐positive cell rates of late PD cells grown in the BBR‐containing medium were ~72% lower than those of control cells, and its morphology resembled that of young cells. Mechanistically, BBR improved cell growth and proliferation by promoting entry of cell cycles from the G0 or G1 phase to S/G2‐M phase. Most importantly, BBR extended the lifespan of chemotherapy‐treated mice and naturally aged mice by ~52% and ~16.49%, respectively. The residual lifespan of the naturally aged mice was extended by 80%, from 85.5 days to 154 days. The oral administration of BBR in mice resulted in significantly improved health span, fur density, and behavioral activity. Therefore, BBR may be an ideal candidate for the development of an anti‐aging medicine.  相似文献   
212.
213.
Accumulation of PINK1 on the outer mitochondrial membrane (OMM) is necessary for PINK‐mediated mitophagy. The proton ionophores, like carbonyl cyanide m‐chlorophenylhydrazone (CCCP) and carbonyl cyanide‐4‐(trifluoromethoxy)phenylhydrazone (FCCP), inhibit PINK1 import into mitochondrial matrix and induce PINK1 OMM accumulation. Here, we show that the CHCHD4/GFER disulfide relay system in the mitochondrial intermembrane space (IMS) is required for PINK1 stabilization when mitochondrial membrane potential is lost. Activation of CHCHD4/GFER system by mitochondrial oxidative stress or inhibition of CHCHD4/GFER system with antioxidants can promote or suppress PINK1 accumulation, respectively. Thus data suggest a pivotal role of CHCHD4/GFER system in PINK1 accumulation. The amyotrophic lateral sclerosis‐related superoxide dismutase 1 mutants dysregulated redox state and CHCHD4/GFER system in the IMS, leading to inhibitions of PINK1 accumulation and mitophagy. Thus, the redox system in the IMS is involved in PINK1 accumulation and damaged mitochondrial clearance, which may play roles in mitochondrial dysfunction‐related neurodegenerative diseases.  相似文献   
214.
Alzheimer's disease (AD) and cancer have inverse relationship in many aspects. Some tumor suppressors, including miR‐34c, are decreased in cancer but increased in AD. The upstream regulatory pathways and the downstream mechanisms of miR‐34c in AD remain to be investigated. The expression of miR‐34c was detected by RT–qPCR in oxidative stressed neurons, hippocampus of SAMP8 mice, or serum of patients with amnestic mild cognitive impairment (aMCI). Dual luciferase assay was performed to confirm the binding sites of miR‐34c in its target mRNA. The Morris water maze (MWM) was used to evaluate learning and memory in SAMP8 mice administrated with miR‐34c antagomir (AM34c). Golgi staining was used to evaluate the synaptic function and structure. The dramatically increased miR‐34c was mediated by ROS‐JNK‐p53 pathway and negatively regulated synaptotagmin 1 (SYT1) expression by targeting the 3′‐untranslated region (3′‐UTR) of syt1 in AD. The expression of SYT1 protein was reduced by over expression of miR‐34c in the HT‐22 cells and vice versa. Administration of AM34c by the third ventricle injection or intranasal delivery markedly increased the brain levels of SYT1 and ameliorated the cognitive function in SAMP8 mice. The serum miR‐34c was significantly increased in patients with aMCI and might be a predictive biomarker for diagnosis of aMCI. These results indicated that increased miR‐34c mediated synaptic and memory deficits by targeting SYT1 through ROS‐JNK‐p53 pathway and the miR‐34c/SYT1 pathway could be considered as a promising novel therapeutic target for patients with AD.  相似文献   
215.
216.
217.
The current work planned to assess the protecting properties of nimbolide against doxorubicin (DOX)‐treated myocardial damage. Myocardial damage was produced with 2.5 mg/kg of DOX given on alternative days (14 days). Thiobarbituric acid reactive substances (TBARS) levels of a lipid peroxidative marker were elevated, whereas reduced body weight, heart weight, blood pressure indices and reduced levels of antioxidants like glutathione‐S‐transferase, superoxide dismutase, catalase, glutathione peroxidase, glutathione, and glutathione reductase were observed in the heart tissue of DOX‐treated animals. DOX‐treated animals showed augmented levels of cardiac markers likes monocyte chemotactic protein‐1, interferon‐gamma, aspartate transferase, creatine kinase, lactate dehydrogenase, creatine kinase‐muscle/brain, heart‐type fatty acid‐binding protein, glycogen phosphorylase isoenzyme BB, transforming growth factor‐β, brain natriuretic peptide, myoglobin, and cTnI in serum. Histopathological assessment confirmed the DOX‐induced cardiotoxicity. Furthermore, DOX‐induced rats showed augmented inflammatory mediators (nuclear factor‐κB [NF‐kB], tumor necrosis factor‐α [TNF‐α], and interleukin‐1β [IL‐1β]) and increased PI3K/Akt signaling proteins (PI3K, p‐Bad/Bad, caspase‐3, and p‐Akt), whereas decreased oxidative markers (HO‐1 and NQO‐1) and p‐PTEN were observed. Nimbolide‐supplemented rats showed reduced activity/levels of cardiac markers and TBARS levels in serum and heart tissue. Levels of enzymatic and nonenzymatic antioxidants were augmented in the heart tissue of nimbolide‐supplemented rats. Nimbolide influence decreased apoptosis, inflammation, and enhanced antioxidant markers through the modulation of p‐Bad/Bad, caspase‐3, PI3K, p‐Akt, TNF‐α, NF‐kB, IL‐1β, HO‐1, NQO‐1, and p‐PTEN markers. The histopathological explanations were observed to be in line with biochemical analysis. Therefore, the finding of current work was that nimbolide has a defensive effect on the myocardium against DOX‐induced cardiac tissue damage.  相似文献   
218.
The progression of diabetic cardiomyopathy is related to cardiomyocyte dysfunction and apoptosis. Our previous studies showed that asporin (ASPN) was significantly increased in the myocardium of db/db mice through proteomics, and grape seed procyanidin B2 (GSPB2) significantly inhibited the expression of ASPN in the heart of db/db mice. We report here that ASPN played a critical role in glycated low‐density lipoproteins (gly‐LDL) induced‐cardiomyocyte apoptosis. We found that gly‐LDL upregulated ASPN expression. ASPN increased H9C2 cardiomyocyte apoptosis with down‐regulation of Bcl‐2, upregulation of transforming growth factor‐β1, Bax, collagen III, fibronectin, and phosphorylation of smad2 and smad3. However, GSPB2 treatment reversed ASPN‐induced impairments in H9C2 cardiomyocytes. These results provide evidence for the cardioprotective action of GSPB2 against ASPN injury, and thus suggest a new target for fighting against diabetic cardiomyopathy.  相似文献   
219.
This work aimed to investigate miR‐93‐5p expression in tumor tissue and its in vitro effects in colorectal cancer (CRC) by targeting programmed death ligand‐1 (PD‐L1). MiR‐93‐5p and PD‐L1 expression was detected in CRC and adjacent normal tissues by quantitative real‐time polymerase chain reaction and immunohistochemistry. The correlation between miR‐93‐5p and PD‐L1 was validated by a dual‐luciferase reporter assay. HCT116 and SW480 cells were divided into blank, miR‐NC, miR‐93‐5p mimics, miR‐93‐5p inhibitor, PD‐L1 small interfering RNA (siRNA) and miR‐93‐5p inhibitor + PD‐L1 siRNA groups, and wound‐healing and transwell assays were performed to detect cell migration and invasion, respectively. Protein expression was measured by western blotting. The secretion of cytokines was detected in the CRC cell/T coculture models. MiR‐93‐5p was downregulated in CRC tissues with upregulated PD‐L1. In PD‐L1‐negative patients, miR‐93‐5p expression was increased compared with that in PD‐L1‐positive patients. MiR‐93‐5p and PD‐L1 expression levels were associated with the tumor differentiation, lymphatic metastasis, TNM, Duke's stage, and prognosis of CRC. PD‐L1 siRNA weakened the migration and invasion abilities via decreased expression of matrix metalloproteinase‐1 (MMP‐1), ‐2, and ‐9, and these effects were abolished by the miR‐93‐5p inhibitor. Additionally, anti‐PD‐L1 upregulated the expressions of interleukin‐2 (IL‐2), tumor necrosis factor‐α (TNF‐α), and interferon γ (IFN‐γ) in the coculture of T cells with CRC cells, but downregulated the expressions of IL‐1β, IL‐10, and TGF‐β. However, these changes were partially reversed by miR‐93‐5p inhibition. miR‐93‐5p is expected to be a novel target for CRC treatment since it decreases the migration and invasion, as well as the immune evasion, of CRC cells via targeting PD‐L1.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号