首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   26篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   11篇
  2020年   4篇
  2019年   1篇
  2018年   10篇
  2017年   4篇
  2016年   12篇
  2015年   17篇
  2014年   28篇
  2013年   22篇
  2012年   31篇
  2011年   28篇
  2010年   25篇
  2009年   19篇
  2008年   23篇
  2007年   16篇
  2006年   25篇
  2005年   22篇
  2004年   17篇
  2003年   13篇
  2002年   11篇
  2001年   3篇
  1999年   1篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1978年   4篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1965年   1篇
排序方式: 共有381条查询结果,搜索用时 328 毫秒
41.
Recent experiments have demonstrated that proteins unfold when two atoms are mechanically pulled apart, and that this process is different to when heated or when a chemical denaturant is added to the solution. Experiments have also shown that the response of proteins to external forces is very diverse, some of them being "hard," and others "soft." Mechanical resistance originates from the presence of barriers on the energy landscape; together, experiment and simulation have demonstrated that unfolding occurs through alternative pathways when different pairs of atoms undergo mechanical extension. Here we use simulation to probe the mechanical resistance of six structurally diverse proteins when pulled in different directions. For this, we use two very different models: a detailed, transferable one, and a coarse-grained, structure-based one. The coarse-grained model gives results that are surprisingly similar to the detailed one and qualitatively agree with experiment; i.e., the mechanical resistance of different proteins or of a single protein pulled in different directions can be predicted by simulation. The results demonstrate the importance of pulling direction relative to the local topology in determining mechanical stability, and rationalize the effect of the location of importation/degradation tags on the rates of mitochondrial import or protein degradation in vivo.  相似文献   
42.
Genetic divergence in geographically isolated populations is a prerequisite for allopatric speciation, one of the most common modes of speciation. In ecologically equivalent populations existing within a small, environmentally homogeneous area, an important role for environmentally neutral divergence is often found or inferred. We studied a species complex of conspicuously shaped Opisthostoma land snails on scattered limestone outcrops within a small area of lowland rainforest in Borneo. We used shell morphometrics, mitochondrial and nuclear DNA sequences, and marks of predation to study the factors involved in allopatric divergence. We found that a striking geographic divergence exists in shell morphology, which is partly associated with neutral genetic divergence. We also found geographic differentiation in the behavior of the snails' invertebrate predator and evidence of an evolutionary interaction between aspects of shell shape and predator behavior. Our study shows that adaptation to biotic aspects of the environment may play a more important role in allopatric speciation than previously suspected, even on a geographically very small scale.  相似文献   
43.
The malarial aminopeptidases have emerged as promising new drug targets for the development of novel antimalarial drugs. The M18AAP of Plasmodium falciparum malaria is a metallo-aminopeptidase that we show demonstrates a highly restricted specificity for peptides with an N-terminal Glu or Asp residue. Thus, the enzyme may function alongside other aminopeptidases in effecting the complete degradation or turnover of proteins, such as host hemoglobin, which provides a free amino acid pool for the growing parasite. Inhibition of PfM18AAP's function using antisense RNA is detrimental to the intra-erythrocytic malaria parasite and, hence, it has been proposed as a potential novel drug target. We report the X-ray crystal structure of the PfM18AAP aminopeptidase and reveal its complex dodecameric assembly arranged via dimer and trimer units that interact to form a large tetrahedron shape that completely encloses the 12 active sites within a central cavity. The four entry points to the catalytic lumen are each guarded by 12 large flexible loops that could control substrate entry into the catalytic sites. PfM18AAP thus resembles a proteasomal-like machine with multiple active sites able to degrade peptide substrates that enter the central lumen. The Plasmodium enzyme shows significant structural differences around the active site when compared to recently determined structures of its mammalian and human homologs, which provides a platform from which a rational approach to inhibitor design of new malaria-specific drugs can begin.  相似文献   
44.
The origin of the Kerala non tribal population has been a matter of contention for centuries. While some claim that Negritos were the first inhabitants, some historians suggest a Dravidian origin for all Keralites. The aim of our study has been to provide sufficient scientific evidence based on Y chromosome short tandem repeat (Y STR) analysis for tracing the paternal lineage and also to create a database of the Y STR haplotype of the male population for future forensic analysis. Whole blood samples (n = 168) were collected from unrelated healthy men of the Kerala non-tribal population over a period of 2 years from October 2009. Genomic DNA was extracted by salting out method. All samples were genotyped for the 17 Y STR loci by the AmpFLSTR Y-filer PCR Amplification Kit. The haplotype and allele frequencies were determined by direct counting and analyzed using Arlequin 3.1 software, and molecular variance was calculated with the Y chromosome haplotype reference database online analysis tool, . Haplotype diversity was calculated using HaPYDive (). The majority of haplotypes were unique (149/168). The variant allele 17.1 was observed in DYS 385 loci in three samples. Fifteen samples (8.93%) showed the presence of alleles that are not within the established marker range denoted as outside marker range (OMR). The allele frequency of Kerala non tribal population ranged from 0.00003 to 0.5809. The most polymorphic single locus marker was DYS 458. The haplotype diversity value for Kerala non tribal population was 0.9978. The pairwise difference value ranged from 0.0531 to 0.0854 on comparison of the haplotypes of the Kerala non tribals with other Indian populations. The multi dimensional scaling plot depicted the proximity of Kerala non tribal population with Vasterbotten population (Swedish) and Paiwan, Patyal population of Taiwan, Thailand, and Zhuang population of China. The results of the study indicate towards a European paternal lineage in the non tribal Kerala population.  相似文献   
45.
Among the mechanisms controlling copper homeostasis in plants is the regulation of its uptake and tissue partitioning. Here we characterized a newly identified member of the conserved CTR/COPT family of copper transporters in Arabidopsis thaliana, COPT6. We showed that COPT6 resides at the plasma membrane and mediates copper accumulation when expressed in the Saccharomyces cerevisiae copper uptake mutant. Although the primary sequence of COPT6 contains the family conserved domains, including methionine-rich motifs in the extracellular N-terminal domain and a second transmembrane helix (TM2), it is different from the founding family member, S. cerevisiae Ctr1p. This conclusion was based on the finding that although the positionally conserved Met106 residue in the TM2 of COPT6 is functionally essential, the conserved Met27 in the N-terminal domain is not. Structure-function studies revealed that the N-terminal domain is dispensable for COPT6 function in copper-replete conditions but is important under copper-limiting conditions. In addition, COPT6 interacts with itself and with its homolog, COPT1, unlike Ctr1p, which interacts only with itself. Analyses of the expression pattern showed that although COPT6 is expressed in different cell types of different plant organs, the bulk of its expression is located in the vasculature. We also show that COPT6 expression is regulated by copper availability that, in part, is controlled by a master regulator of copper homeostasis, SPL7. Finally, studies using the A. thaliana copt6-1 mutant and plants overexpressing COPT6 revealed its essential role during copper limitation and excess.  相似文献   
46.
Spinal Muscular Atrophy is a recessive genetic disease and affects lower motor neurones and muscle tissue. A single gene is disrupted in SMA: SMN1 activity is abolished but a second copy of the gene (SMN2) provides limited activity. While the SMN protein has been shown to function in the assembly of RNA-protein complexes, it is unclear how the overall reduction in SMN activity specifically results in the neuromuscular phenotypes. Similar to humans, reduced smn activity in the fly causes earliest phenotypes in neuromuscular tissues. To uncover the effects of reduced SMN activity, we have studied gene expression in control and diseased fly tissues using whole genome micro-arrays. A number of gene expression changes are recovered and independently validated. Identified genes show trends in their predicted function: several are consistent with the function of SMN, in addition some uncover novel pathways. This and subsequent genetic analysis in the fly indicates some of the identified genes could be taken for further studies as potential drug targets for SMA and other neuromuscular disorders.  相似文献   
47.
Rod/cone photoreceptors of the outer retina and the melanopsin-expressing retinal ganglion cells (mRGCs) of the inner retina mediate non-image forming visual responses including entrainment of the circadian clock to the ambient light, the pupillary light reflex (PLR), and light modulation of activity. Targeted deletion of the melanopsin gene attenuates these adaptive responses with no apparent change in the development and morphology of the mRGCs. Comprehensive identification of mRGCs and knowledge of their specific roles in image-forming and non-image forming photoresponses are currently lacking. We used a Cre-dependent GFP expression strategy in mice to genetically label the mRGCs. This revealed that only a subset of mRGCs express enough immunocytochemically detectable levels of melanopsin. We also used a Cre-inducible diphtheria toxin receptor (iDTR) expression approach to express the DTR in mRGCs. mRGCs develop normally, but can be acutely ablated upon diphtheria toxin administration. The mRGC-ablated mice exhibited normal outer retinal function. However, they completely lacked non-image forming visual responses such as circadian photoentrainment, light modulation of activity, and PLR. These results point to the mRGCs as the site of functional integration of the rod/cone and melanopsin phototransduction pathways and as the primary anatomical site for the divergence of image-forming and non-image forming photoresponses in mammals.  相似文献   
48.
Information about the saccharides expressed in gastric mucosa is mostly limited to the glycan content of gastric mucins and there are only a few studies of the glycoprofiling of the constituent cells and their components. Knowledge of the glycan expression of normal gastric mucosa is necessary for the interpretation of the significance of changes of expression in disease. A lectin histochemical study of normal human gastric (body) mucosa was performed using 27 lectins chosen to probe for a wide range of oligosaccharide sequences within several categories of glycoprotein glycans. There were marked differences in staining reactions in the various microanatomical structures of the mucosa, particularly between pits and glands with the former more closely resembling the surface epithelium. A notable feature was the degree of difference in the staining between a substantial sub-population of cells within the neck region and the epithelium of both the pits and glands. These neck cells resembled the pit cells with some lectins, glandular cells with some others and neither with some other lectins. Overall, the differences between the pit, gland and neck epithelia were diverse and numerous, and could not be explained by altered activity of a small set of glycosyltransferases. Widespread alterations of glycans must have occurred (affecting terminal and internal parts of their structures) and the very different glycotypes of the pit, neck and gland epithelia are, therefore, suggestive of the existence of three cell lineages within normal gastric epithelium. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
49.
Despite much progress in understanding the folding and the aggregation processes of proteins, the rules defining their interplay have yet to be fully defined. This problem is of particular importance since many diseases are initiated by protein unfolding and hence the propensity to aggregate competes with intramolecular collapse and other folding events. Here, we describe the roles of intramolecular and intermolecular interactions in defining the length of the lag time and the apparent rate of elongation of the 100-residue protein human β2-microglobulin at pH 2.5, commencing from an acid-denatured state that lacks persistent structure but contains significant non-random hydrophobic interactions. Using a combination of site-directed mutagenesis, quantitative kinetic analysis and computational methods, we show that only a single region of about 10 residues in length, determines the rate of fibril formation, despite the fact that other regions exhibit a significant intrinsic propensity for aggregation. We rationalise these results by analysing the effect of incorporating the conformational properties of acid-unfolded β2-microglobulin and its variants at pH 2.5 as measured by NMR spectroscopy into the Zyggregator aggregation prediction algorithm. These results demonstrate that residual structure in the precursor state modulates the intrinsic propensity of the polypeptide chain to aggregate and that the algorithm developed here allows the key regions for aggregation to be more clearly identified and the rates of their self-association to be predicted. Given the common propensity of unfolded chains to form non-random intramolecular interactions as monomers and to self-assemble subsequently into amyloid fibrils, the approach developed should find widespread utility for the prediction of regions important in amyloid formation and their rates of self-assembly.  相似文献   
50.
Fragmentation of amyloid fibrils produces fibrils that are reduced in length but have an otherwise unchanged molecular architecture. The resultant nanoscale fibril particles inhibit the cellular reduction of the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), a substrate commonly used to measure cell viability, to a greater extent than unfragmented fibrils. Here we show that the internalization of β2-microglobulin (β2m) amyloid fibrils is dependent on fibril length, with fragmented fibrils being more efficiently internalized by cells. Correspondingly, inhibiting the internalization of fragmented β2m fibrils rescued cellular MTT reduction. Incubation of cells with fragmented β2m fibrils did not, however, cause cell death. Instead, fragmented β2m fibrils accumulate in lysosomes, alter the trafficking of lysosomal membrane proteins, and inhibit the degradation of a model protein substrate by lysosomes. These findings suggest that nanoscale fibrils formed early during amyloid assembly reactions or by the fragmentation of longer fibrils could play a role in amyloid disease by disrupting protein degradation by lysosomes and trafficking in the endolysosomal pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号