首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1637篇
  免费   109篇
  2022年   15篇
  2021年   26篇
  2020年   15篇
  2019年   13篇
  2018年   20篇
  2017年   21篇
  2016年   46篇
  2015年   53篇
  2014年   67篇
  2013年   69篇
  2012年   105篇
  2011年   95篇
  2010年   75篇
  2009年   57篇
  2008年   83篇
  2007年   66篇
  2006年   62篇
  2005年   65篇
  2004年   63篇
  2003年   61篇
  2002年   38篇
  2001年   37篇
  2000年   38篇
  1999年   36篇
  1998年   15篇
  1997年   17篇
  1996年   10篇
  1994年   15篇
  1992年   23篇
  1991年   31篇
  1990年   23篇
  1989年   24篇
  1988年   28篇
  1987年   33篇
  1986年   17篇
  1985年   22篇
  1984年   20篇
  1983年   17篇
  1980年   10篇
  1979年   16篇
  1977年   21篇
  1975年   9篇
  1974年   12篇
  1973年   13篇
  1972年   13篇
  1971年   12篇
  1969年   14篇
  1968年   13篇
  1967年   9篇
  1965年   9篇
排序方式: 共有1746条查询结果,搜索用时 281 毫秒
991.
Angiotensin-I-converting enzyme (ACE) is known to be associated with human cardiovascular and psychiatric pathophysiology. We have undertaken a global survey of the haplotypes in ACE gene to study diversity and to draw inferences on the nature of selective forces that may be operating on this gene. We have investigated the haplotype profiles reconstructed using polymorphisms in the regulatory (rs4277405, rs4459609, rs1800764, rs4292, rs4291), exonic (rs4309, rs4331, rs4343), and intronic (rs4340; Alu [I/D]) regions covering 17.8 kb of the ACE gene. We genotyped these polymorphisms in a large number of individuals drawn from 15 Indian ethnic groups and estimated haplotype frequencies. We compared the Indian data with available data from other global populations. Globally, five major haplotypes were observed. High-frequency haplotypes comprising mismatching alleles at the loci considered were seen in all populations. The three most frequent haplotypes among Africans were distinct from the major haplotypes of other world populations. We have studied the evolution of the two major haplotypes (TATATTGIA and CCCTCCADG), one of which contains an Alu insertion (I) and the other a deletion (D), seen most frequently among Caucasians (68%), non-African HapMap populations (65?C88%), and Indian populations (70?C95%) in detail. The two major haplotypes among Caucasians are reported to represent two distinct clades A and B. Earlier studies have postulated that a third clade C (represented by the haplotypes TACATCADG and TACATCADA) arose from an ancestral recombination event between A and B. We find that a more parsimonious explanation is that clades A and B have arisen by recombination between haplotypes belonging to clade C and a high-frequency African haplotype CCCTTCGIA. The haplotypes, which according to our hypothesis are the putative non-recombinants (PuNR), are uncommon in all non-African populations (frequency range 0?C12%). Conversely, the frequencies of the putative recombinant haplotypes (PuR) are very low in the Africans populations (2?C8%), indicating that the recombination event is likely to be ancient and arose before, perhaps shortly prior to, the global dispersal of modern humans. The global frequency spectrum of the PuR and the PuNR is difficult to explain only by drift. It appears likely that the ACE gene has been undergoing a combination of different selective pressures.  相似文献   
992.
Severe acute respiratory coronavirus (SARS-CoV) emerged in 2002, resulting in roughly 8000 cases worldwide and 10% mortality. The animal reservoirs for SARS-CoV precursors still exist and the likelihood of future outbreaks in the human population is high. The SARS-CoV papain-like protease (PLP) is an attractive target for pharmaceutical development because it is essential for virus replication and is conserved among human coronaviruses. A yeast-based assay was established for PLP activity that relies on the ability of PLP to induce a pronounced slow-growth phenotype when expressed in S. cerevisiae. Induction of the slow-growth phenotype was shown to take place over a 60-hour time course, providing the basis for conducting a screen for small molecules that restore growth by inhibiting the function of PLP. Five chemical suppressors of the slow-growth phenotype were identified from the 2000 member NIH Diversity Set library. One of these, NSC158362, potently inhibited SARS-CoV replication in cell culture without toxic effects on cells, and it specifically inhibited SARS-CoV replication but not influenza virus replication. The effect of NSC158362 on PLP protease, deubiquitinase and anti-interferon activities was investigated but the compound did not alter these activities. Another suppressor, NSC158011, demonstrated the ability to inhibit PLP protease activity in a cell-based assay. The identification of these inhibitors demonstrated a strong functional connection between the PLP-based yeast assay, the inhibitory compounds, and SARS-CoV biology. Furthermore the data with NSC158362 suggest a novel mechanism for inhibition of SARS-CoV replication that may involve an unknown activity of PLP, or alternatively a direct effect on a cellular target that modifies or bypasses PLP function in yeast and mammalian cells.  相似文献   
993.
994.
Diseases transmitted by mosquitoes have a devastating impact on global health and this is worsening due to difficulties with existing control measures and climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. Historically the genetic modification of insects has relied upon transposable elements which have many limitations despite their successful use. To circumvent these limitations the Streptomyces phage phiC31 integrase system has been successfully adapted for site-specific transgene integration in insects. Here, we present the first site-specific transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 targeting site at a defined genomic location. A second phase of genetic modification then achieved site-specific integration of Vida3, a synthetic anti-malarial gene. Expression of Vida3, specifically in the midgut of bloodfed females, offered consistent and significant protection against Plasmodium yoelii nigeriensis, reducing average parasite intensity by 85%. Similar protection was observed against Plasmodium falciparum in some experiments, although protection was inconsistent. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters for their expression, enabling those offering maximum effect with minimum fitness cost to be identified. In the future, this technology will allow effective comparisons and informed choices to be made, potentially leading to complete transmission blockade.  相似文献   
995.
There is substantial evidence implicating N-methyl-D-aspartate receptors (NMDARs) in memory and cognition. It has also been suggested that NMDAR hypofunction might underlie the cognitive deficits observed in schizophrenia as morphological changes, including alterations in the dendritic architecture of pyramidal neurons in the prefrontal cortex (PFC), have been reported in the schizophrenic brain post mortem. Here, we used a genetic model of NMDAR hypofunction, a serine racemase knockout (SR-/-) mouse in which the first coding exon of the mouse SR gene has been deleted, to explore the role of D-serine in regulating cognitive functions as well as dendritic architecture. SR-/- mice exhibited a significantly disrupted representation of the order of events in distinct experiences as showed by object recognition and odor sequence tests; however, SR-/- animals were unimpaired in the detection of novel objects and in spatial displacement, and showed intact relational memory in a test of transitive inference. In addition, SR-/- mice exhibited normal sociability and preference for social novelty. Neurons in the medial PFC of SR-/- mice displayed reductions in the complexity, total length and spine density of apical dendrites. These findings show that D-serine is important for specific aspects of cognition, as well as in regulating dendritic morphology of pyramidal neurons in the medial PFC (mPFC). Moreover, they suggest that NMDAR hypofunction might, in part, be responsible for the cognitive deficits and synaptic changes associated with schizophrenia, and highlight this signaling pathway as a potential target for therapeutic intervention.  相似文献   
996.
Das S  Dutta K  Kumawat KL  Ghoshal A  Adhya D  Basu A 《PloS one》2011,6(3):e17225

Background

Japanese encephalitis virus (JEV) induces neuroinflammation with typical features of viral encephalitis, including inflammatory cell infiltration, activation of microglia, and neuronal degeneration. The detrimental effects of inflammation on neurogenesis have been reported in various models of acute and chronic inflammation. We investigated whether JEV-induced inflammation has similar adverse effects on neurogenesis and whether those effects can be reversed using an anti-inflammatory compound minocycline.

Methodology/Principal Findings

Here, using in vitro studies and mouse models, we observed that an acute inflammatory milieu is created in the subventricular neurogenic niche following Japanese encephalitis (JE) and a resultant impairment in neurogenesis occurs, which can be reversed with minocycline treatment. Immunohistological studies showed that proliferating cells were replenished and the population of migrating neuroblasts was restored in the niche following minocycline treatment. In vitro, we checked for the efficacy of minocycline as an anti-inflammatory compound and cytokine bead array showed that production of cyto/chemokines decreased in JEV-activated BV2 cells. Furthermore, mouse neurospheres grown in the conditioned media from JEV-activated microglia exhibit arrest in both proliferation and differentiation of the spheres compared to conditioned media from control microglia. These effects were completely reversed when conditioned media from JEV-activated and minocycline treated microglia was used.

Conclusion/Significance

This study provides conclusive evidence that JEV-activated microglia and the resultant inflammatory molecules are anti-proliferative and anti-neurogenic for NSPCs growth and development, and therefore contribute to the viral neuropathogenesis. The role of minocycline in restoring neurogenesis may implicate enhanced neuronal repair and attenuation of the neuropsychiatric sequelae in JE survivors.  相似文献   
997.
THE LAC INSECTS (HOMOPTERA: Tachardiidae), belonging to the genus Kerria, are commercially exploited for the production of lac. Kerria lacca is the most commonly used species in India. RAPD markers were used for assessing genetic variation in forty-eight lines of Kerria, especially among geographic races, infrasubspecific forms, cultivated lines, inbred lines, etc., of K. lacca. In the 48 lines studied, the 26 RAPD primers generated 173 loci, showing 97.7% polymorphism. By using neighbor-joining, the dendrogram generated from the similarity matrix resolved the lines into basically two clusters and outgroups. The major cluster, comprising 32 lines, included mainly cultivated lines of the rangeeni form, geographic races and inbred lines of K. lacca. The second cluster consisted of eight lines of K. lacca, seven of the kusmi form and one of the rangeeni from the southern state of Karnataka. The remaining eight lines formed a series of outgroups, this including a group of three yellow mutant lines of K. lacca and other species of the Kerria studied, among others. Color mutants always showed distinctive banding patterns compared to their wild-type counterparts from the same population. This study also adds support to the current status of kusmi and rangeeni, as infraspecific forms of K. lacca.  相似文献   
998.
999.
Dehydration is the most crucial environmental factor that limits plant growth, development, and productivity affecting agriculture throughout the world. Studies on genetic variations for dehydration tolerance in plants is crucial because divergent cultivars with contrasting traits aid the identification of key cellular components that confer better adaptability. The extracellular matrix (ECM) is a dynamic structure that serves as the repository for important signaling components and acts as a front-line defense. To better understand dehydration adaptation, a proteomic study was performed on the extracellular matrix of ICCV-2, a dehydration-susceptible genotype of chickpea. The proteome was generated with ECM-enriched fractions using two-dimensional gel electrophoresis. The LC-ESI-MS/MS analysis led to the identification of 81 dehydration-responsive proteins. The proteome was then compared with that of JG-62, a tolerant genotype. Comparative proteomics revealed genotype-specific expression of many proteins involved in a variety of cellular functions. Further, the reversible and irreversible changes in the proteomes revealed their differing ability to recover from dehydration-induced damage. We propose that cell wall restructuring and superior homeostasis, particularly the management of reactive oxygen species, may render better dehydration-adaptation. To our knowledge, this is the first report on the comprehensive comparison of dehydration-responsive organellar proteome of two genotypes with contrasting tolerance.  相似文献   
1000.
The cannabinoid receptor 2 (CB2) has been reported to modulate B cell functions including migration, proliferation and isotype class switching. Since these processes are required for the generation of the germinal center (GC) and antigen-specific plasma and memory cells following immunization with a T-dependent antigen, CB2 has the capacity to alter the quality and magnitude of T-dependent immune responses. To address this question, we immunized WT and CB2−/− mice with the T-dependent antigen 4-hydroxy-3-nitrophenylacetyl (NP)-chicken-gamma-globulin (CGG) and measured GC B cell formation and the generation of antigen-specific B cells and serum immunoglobulin (Ig). While there was a significant reduction in the number of splenic GC B cells in CB2−/− mice early in the response there was no detectable difference in the number of NP-specific IgM and IgG1 plasma cells. There was also no difference in NP-specific IgM and class switched IgG1 in the serum. In addition, we found no defect in the homing of plasma cells to the bone marrow (BM) and affinity maturation, although memory B cell cells in the spleen were reduced in CB2−/− mice. CB2-deficient mice also generated similar levels of antigen-specific IgM and IgG in the serum as WT following immunization with sheep red blood cells (sRBC). This study demonstrates that although CB2 plays a role in promoting GC and memory B cell formation/maintenance in the spleen, it is dispensable on all immune cell types required for the generation of antigen-specific IgM and IgG in T-dependent immune responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号