首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   61篇
  459篇
  2022年   4篇
  2021年   8篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   3篇
  2016年   16篇
  2015年   18篇
  2014年   23篇
  2013年   22篇
  2012年   32篇
  2011年   33篇
  2010年   15篇
  2009年   17篇
  2008年   23篇
  2007年   17篇
  2006年   13篇
  2005年   18篇
  2004年   17篇
  2003年   13篇
  2002年   21篇
  2001年   15篇
  2000年   9篇
  1999年   8篇
  1996年   5篇
  1995年   6篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1969年   3篇
  1968年   3篇
  1967年   2篇
  1965年   4篇
  1957年   3篇
排序方式: 共有459条查询结果,搜索用时 15 毫秒
81.
Replication‐factor C (RFC) is a protein complex that loads the processivity clamp PCNA onto DNA. Elg1 is a conserved protein with homology to the largest subunit of RFC, but its function remained enigmatic. Here, we show that yeast Elg1 interacts physically and genetically with PCNA, in a manner that depends on PCNA modification, and exhibits preferential affinity for SUMOylated PCNA. This interaction is mediated by three small ubiquitin‐like modifier (SUMO)‐interacting motifs and a PCNA‐interacting protein box close to the N‐terminus of Elg1. These motifs are important for the ability of Elg1 to maintain genomic stability. SUMOylated PCNA is known to recruit the helicase Srs2, and in the absence of Elg1, Srs2 and SUMOylated PCNA accumulate on chromatin. Strains carrying mutations in both ELG1 and SRS2 exhibit a synthetic fitness defect that depends on PCNA modification. Our results underscore the importance of Elg1, Srs2 and SUMOylated PCNA in the maintenance of genomic stability.  相似文献   
82.
83.
84.
The sanitary quality of recreational waters that may be impacted by sewage is assessed by enumerating fecal indicator bacteria (FIB) (Escherichia coli and enterococci); these organisms are found in the gastrointestinal tracts of humans and many other animals, and hence their presence provides no information about the pollution source. Microbial source tracking (MST) methods can discriminate between different pollution sources, providing critical information to water quality managers, but relatively little is known about factors influencing the decay of FIB and MST genetic markers following release into aquatic environments. An in situ mesocosm was deployed at a temperate recreational beach in the Mississippi River to evaluate the effects of ambient sunlight and biotic interactions (predation, competition, and viral lysis) on the decay of culture-based FIB, as well as molecularly based FIB (Entero1a and GenBac3) and human-associated MST genetic markers (HF183 and HumM2) measured by quantitative real-time PCR (qPCR). In general, culturable FIB decayed the fastest, while molecularly based FIB and human-associated genetic markers decayed more slowly. There was a strong correlation between the decay of molecularly based FIB and that of human-associated genetic markers (r2, 0.96 to 0.98; P < 0.0001) but not between culturable FIB and any qPCR measurement. Overall, exposure to ambient sunlight may be an important factor in the early-stage decay dynamics but generally was not after continued exposure (i.e., after 120 h), when biotic interactions tended to be the only/major influential determinant of persistence.  相似文献   
85.
86.
Methods for detecting the genomic signatures of natural selection have been heavily studied, and they have been successful in identifying many selective sweeps. For most of these sweeps, the favored allele remains unknown, making it difficult to distinguish carriers of the sweep from non-carriers. In an ongoing selective sweep, carriers of the favored allele are likely to contain a future most recent common ancestor. Therefore, identifying them may prove useful in predicting the evolutionary trajectory—for example, in contexts involving drug-resistant pathogen strains or cancer subclones. The main contribution of this paper is the development and analysis of a new statistic, the Haplotype Allele Frequency (HAF) score. The HAF score, assigned to individual haplotypes in a sample, naturally captures many of the properties shared by haplotypes carrying a favored allele. We provide a theoretical framework for computing expected HAF scores under different evolutionary scenarios, and we validate the theoretical predictions with simulations. As an application of HAF score computations, we develop an algorithm (PreCIOSS: Predicting Carriers of Ongoing Selective Sweeps) to identify carriers of the favored allele in selective sweeps, and we demonstrate its power on simulations of both hard and soft sweeps, as well as on data from well-known sweeps in human populations.  相似文献   
87.
88.
Shay FJ  Hale MG 《Plant physiology》1973,51(6):1061-1063
The effects of 10, 20, 35 and 50 mg of Ca2+ per liter on the qualitative and quantitative exudation of sugars from roots of 5-week-old peanut plants, Arachis hypogaea L., grown axenically in nutrient solutions, were measured. Nutrient solutions in which plants had been growing were collected at weekly intervals for 4 weeks, sugars in them were measured by gasliquid chromatography of the trimethylsilyl derivatives. Arabinose, ribose, xylose, fructose, mannose, glucose, galactose, mannitol, galacturonic acid, inositol, sucrose, and five unknowns were found. Qualitative and quantitative differences in exudates were correlated with age of the plants and calcium level. Four times more sugar was exuded at 10 mg than at 50 mg of Ca2+ per liter but no significant differences in growth were observed. Ion efflux measurements suggested that low levels of Ca2+ increased root cell membrane permeability.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号