首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   51篇
  2022年   4篇
  2021年   7篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   3篇
  2016年   15篇
  2015年   15篇
  2014年   20篇
  2013年   20篇
  2012年   27篇
  2011年   26篇
  2010年   12篇
  2009年   16篇
  2008年   19篇
  2007年   13篇
  2006年   13篇
  2005年   15篇
  2004年   13篇
  2003年   13篇
  2002年   19篇
  2001年   13篇
  2000年   8篇
  1999年   7篇
  1998年   2篇
  1996年   4篇
  1995年   5篇
  1993年   2篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
  1972年   2篇
  1969年   2篇
  1968年   2篇
  1965年   4篇
  1963年   1篇
  1960年   1篇
  1958年   1篇
  1957年   2篇
  1952年   1篇
  1943年   1篇
排序方式: 共有394条查询结果,搜索用时 15 毫秒
51.
2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) has extensively been used for clinical diagnosis, staging, and therapy monitoring of cancer and other diseases. Nonradioactive glucose analogues enabling the screening of the glucose metabolic rate of tumors are of particular interest for anticancer drug development. A nonradioactive fluorescent deoxyglucose analogue may have many applications for both imaging of tumors and monitoring therapeutic efficacy of drugs in living animals and may eventually translate to clinical applications. We found that a fluorescent 2-deoxyglucose analogue, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG), can be delivered in several tumor cells via the glucose transporters (GLUTs). We therefore conjugated D-glucosamine with a near-infrared (NIR) fluorphor Cy5.5 and tested the feasibility of the Cy5.5-D-glucosamine (Cy5.5-2DG) conjugate for NIR fluorescence imaging of tumors in a preclinical xenograft animal model. Cy5.5-2DG was prepared by conjugating Cy5.5 monofunctional N-hydroxysuccinimide ester (Cy5.5-NHS) and D-glucosamine followed by high-performance liquid chromatography purification. The accumulation of Cy5.5-2DG and Cy5.5-NHS in different tumor cell lines at 37 and 4 degrees C were imaged using a fluorescence microscope. Tumor targeting and retention of Cy5.5-2DG and Cy5.5-NHS in a subcutaneous U87MG glioma and A375M melanoma tumor model were evaluated and quantified by a Xenogen IVIS 200 optical cooled charged-coupled device system. Fluorescence microscopy imaging shows that Cy5.5-2DG and Cy5.5-NHS are taken up and trapped by a variety of tumor cell lines at 37 degrees C incubation, while they exhibit marginal uptake at 4 degrees C. The tumor cell uptake of Cy5.5-2DG cannot be blocked by the 50 mM D-glucose, suggesting that Cy5.5-2DG may not be delivered in tumor cells by GLUTs. U87MG and A375M tumor localization was clearly visualized in living mice with both NIR fluorescent probes. Tumor/muscle contrast was clearly visible as early as 30 min postinjection (pi), and the highest U87MG tumor/muscle ratios of 2.81 +/- 0.10 and 3.34 +/- 0.23 were achieved 24 h pi for Cy5.5-2DG and Cy5.5-NHS, respectively. While as a comparison, the micropositron emission tomography imaging study shows that [18F]FDG preferentially localizes to the U87MG tumor, with resulting tumor/muscle ratios ranging from 3.89 to 4.08 after 30 min to 2 h postadministration of the probe. In conclusion, the NIR fluorescent glucose analogues, Cy5.5-2DG and Cy5.5-NHS, both demonstrate tumor-targeting abilities in cell culture and living mice. More studies are warranted to further explore their application for optical tumor imaging. To develop NIR glucose analogues with the ability to target GLUTs/hexokinase, it is highly important to select NIR dyes with a reasonable molecular size.  相似文献   
52.
53.
Chai W  Du Q  Shay JW  Wright WE 《Molecular cell》2006,21(3):427-435
G-rich 3' telomeric overhangs are required both for forming the distinct telomere structures to protect chromosome ends and for extending telomeres by telomerase. However, little is known about the molecular mechanisms generating telomere overhangs in human cells. We show here that cultured normal human diploid cells have longer G overhangs at telomeres generated by lagging-strand synthesis than by leading-strand synthesis. We also demonstrate that telomerase expression results in elongated overhangs at the leading daughter telomeres. Thus, the overhangs at the leading and lagging daughter telomeres are generated differently in human cells, and telomerase may preferentially affect overhangs generated at the telomeres produced by leading-strand synthesis.  相似文献   
54.
Structural studies place the VDAC1 (voltage-dependent anion channel 1) N-terminal region within the channel pore. Biochemical and functional studies, however, reveal that the N-terminal domain is cytoplasmically exposed. In the present study, the location and translocation of the VDAC1 N-terminal domain, and its role in voltage-gating and as a target for anti-apoptotic proteins, were addressed. Site-directed mutagenesis and cysteine residue substitution, together with a thiol-specific cross-linker, served to show that the VDAC1 N-terminal region exists in a dynamic equilibrium, located within the pore or exposed outside the β-barrel. Using a single cysteine-residue-bearing VDAC1, we demonstrate that the N-terminal region lies inside the pore. However, the same region can be exposed outside the pore, where it dimerizes with the N-terminal domain of a second VDAC1 molecule. When the N-terminal region α-helix structure was perturbed, intra-molecular cross-linking was abolished and dimerization was enhanced. This mutant also displays reduced voltage-gating and reduced binding to hexokinase, but not to the anti-apoptotic proteins Bcl-2 and Bcl-xL. Replacing glycine residues in the N-terminal domain GRS (glycine-rich sequence) yielded less intra-molecular cross-linked product but more dimerization, suggesting that GRS provides the flexibility needed for N-terminal translocation from the internal pore to the channel face. N-terminal mobility may thus contribute to channel gating and interaction with anti-apoptotic proteins.  相似文献   
55.
56.
The resonance properties of individual neurons in entorhinal cortex (EC) may contribute to their functional properties in awake, behaving rats. Models propose that entorhinal grid cells could arise from shifts in the intrinsic frequency of neurons caused by changes in membrane potential owing to depolarizing input from neurons coding velocity. To test for potential changes in intrinsic frequency, we measured the resonance properties of neurons at different membrane potentials in neurons in medial and lateral EC. In medial entorhinal neurons, the resonant frequency of individual neurons decreased in a linear manner as the membrane potential was depolarized between -70 and -55 mV. At more hyperpolarized membrane potentials, cells asymptotically approached a maximum resonance frequency. Consistent with the previous studies, near resting potential, the cells of the medial EC possessed a decreasing gradient of resonance frequency along the dorsal to ventral axis, and cells of the lateral EC lacked resonant properties, regardless of membrane potential or position along the medial to lateral axis within lateral EC. Application of 10 μM ZD7288, the H-channel blocker, abolished all resonant properties in MEC cells, and resulted in physiological properties very similar to lateral EC cells. These results on resonant properties show a clear change in frequency response with depolarization that could contribute to the generation of grid cell firing properties in the medial EC.  相似文献   
57.
Blast-Induced Traumatic Brain Injury (bTBI) describes a spectrum of injuries caused by an explosive force that results in changes in brain function. The mechanism responsible for primary bTBI following a blast shockwave remains unknown. We have developed a pneumatic device that delivers shockwaves, similar to those known to induce bTBI, within a chamber optimal for fluorescence microscopy. Abrupt changes in pressure can be created with and without the presence of shear forces at the surface of cells. In primary cultures of human central nervous system cells, the cellular calcium response to shockwaves alone was negligible. Even when the applied pressure reached 15 atm, there was no damage or excitation, unless concomitant shear forces, peaking between 0.3 to 0.7 Pa, were present at the cell surface. The probability of cellular injury in response to a shockwave was low and cell survival was unaffected 20 hours after shockwave exposure.  相似文献   
58.
59.
60.
Ultraviolet light (UV) can provoke genome instability, partly through its ability to induce homologous recombination (HR). However, the mechanism(s) of UV-induced recombination is poorly understood. Although double-strand breaks (DSBs) have been invoked, there is little evidence for their generation by UV. Alternatively, single-strand DNA lesions that stall replication forks could provoke recombination. Recent findings suggest efficient initiation of UV-induced recombination in G1 through processing of closely spaced single-strand lesions to DSBs. However, other scenarios are possible, since the recombination initiated in G1 can be completed in the following stages of the cell cycle. We developed a system that could address UV-induced recombination events that start and finish in G2 by manipulating the activity of the sister chromatid cohesion complex. Here we show that sister-chromatid cohesion suppresses UV-induced recombination events that are initiated and resolved in G2. By comparing recombination frequencies and survival between UV and ionizing radiation, we conclude that a substantial portion of UV-induced recombination occurs through DSBs. This notion is supported by a direct physical observation of UV-induced DSBs that are dependent on nucleotide excision repair. However, a significant role of nonDSB intermediates in UV-induced recombination cannot be excluded.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号