首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3794篇
  免费   382篇
  国内免费   269篇
  2024年   6篇
  2023年   29篇
  2022年   64篇
  2021年   148篇
  2020年   100篇
  2019年   148篇
  2018年   144篇
  2017年   120篇
  2016年   164篇
  2015年   262篇
  2014年   275篇
  2013年   292篇
  2012年   364篇
  2011年   320篇
  2010年   209篇
  2009年   187篇
  2008年   230篇
  2007年   199篇
  2006年   162篇
  2005年   137篇
  2004年   138篇
  2003年   125篇
  2002年   117篇
  2001年   66篇
  2000年   52篇
  1999年   53篇
  1998年   26篇
  1997年   20篇
  1996年   24篇
  1995年   16篇
  1994年   20篇
  1993年   20篇
  1992年   22篇
  1991年   14篇
  1990年   17篇
  1989年   9篇
  1988年   13篇
  1987年   10篇
  1986年   16篇
  1985年   6篇
  1984年   12篇
  1983年   11篇
  1982年   5篇
  1981年   5篇
  1980年   7篇
  1979年   4篇
  1978年   6篇
  1976年   8篇
  1975年   10篇
  1974年   9篇
排序方式: 共有4445条查询结果,搜索用时 46 毫秒
991.
5-Lipoxygenase (5-LO) is the key enzyme involved in leukotriene synthesis and its improper regulation is implicated in several inflammatory diseases. A rapid and sensitive assay for 5-LO activity suitable for high-throughput format is not yet available. In this study, we examined whether the ferrous oxidation-xylenol orange (FOX) assay could be applicable for the high-throughput screening of 5-LO inhibitors. Using insect cell lysates overexpressing rat 5-LO, the effects of cofactors of 5-LO such as ATP, Ca2+, and L-alpha-phosphatidylcholine (PC) on the color development of FOX reagents were investigated. ATP quenched substantially color development by hydroperoxide, an intermediate of 5-LO reaction, and an optimum concentration of ATP with little interference was determined as 20 microM. Ethylenediaminetetraacetate (0.4 mM) also affected the complex formation with FOX reagents. On the other hand, neither Ca2+ nor PC influenced complex formation with FOX reagents. Under optimized assay conditions, zileuton, a 5-LO-specific inhibitor, exhibited inhibitory potency (IC50 values of 0.1-0.2 microM) similar to that determined by the conventional spectrophotometric assay. Taken together, this study shows that the FOX assay with some modifications can be employed for high-throughput assay format for the measurement of 5-LO activity at the stage of primary screening.  相似文献   
992.
The objective of the study was to evaluate differentiation of human bone marrow mesenchymal stem cells into true or pseudo neurons after treating with chemical induction medium in vitro. The morphological changes were assessed using interference contrast microscopy. Immunocytochemistry and Western blotting were performed using neuronal markers. Further evaluation was conducted with proteomic profiling, DNA microarray analysis and the whole-cell patch clamp test. After three hours of treatment with chemical induction medium, nearly three-fourths of the hMSCs changed to cells with a neuronal phenotype. The results of immunocytochemistry and Western blotting showed a high expression of neuronal markers in these cells at 3 h which decreased at 24 h. The proteomics analysis showed no change of proteins related to neuronal differentiation. DNA microarray showed downregulation of neuron related genes. The patch clamp test was unable to demonstrate any similarity to true neurons. Our findings suggest that neuron-like cells derived from chemical induction of hMSCs are not the genuine neurons as they resemble true neurons phenotypically but are different in genotypic and electrophysiological characteristics.  相似文献   
993.
Streptococcus mutans is implicated in coronal and dental root decay, and in endocarditis. Comparative study of the amino acid sequence of S. mutans 47 kDa wall-associated protein A (WapA) revealed a collagen-binding domain (CBD) at the N-terminal region. Recombinant AgA (WapA truncated at the carboxyterminal end) was isolated, biotin-labeled, and analyzed by Solid Phase Binding Assay. The results showed that biotin-labeled AgA bound significantly and in a dose-dependent manner to immobilized collagen type I, and to a lesser extent to fibronectin, but not to collagen type IV or laminin. Binding of biotin-labeled S. mutans cells to collagen-coated surfaces was significantly inhibited by antibody to WapA or AgA (P<0.001). The results obtained confirmed the collagen-binding activity of CBD in AgA and WapA, and suggested that WapA may be used, not only as a vaccine against coronal and dental root caries, but also against S. mutans-mediated endocarditis.  相似文献   
994.
Jiang Y  Chan CH  Cronan JE 《Biochemistry》2006,45(33):10008-10019
The gene encoding the unique soluble acyl-acyl carrier protein synthetase (AasS) of the bioluminescent Vibrio harveyi strain B392 has been isolated by expression cloning in Escherichia coli.This enzyme catalyzes the ATP-dependent acylation of the thiol of acyl carrier protein (ACP) with fatty acids with chain lengths from C4 to C18. The gene (called aasS) encodes a protein of 60 kDa, a hexahistidine-tagged version of which was readily expressed in E. coli and purified in large quantities. Surprisingly, the sequence of the encoded protein was significantly more similar to that of an acyl-CoA synthetase of the distantly related bacterium, Thermus thermophilus, than to that of the membrane-bound acyl-acyl carrier protein synthetase of E. coli, an enzyme that catalyzes the same reaction from a more closely related organism. Indeed, the AasS sequence can readily be modeled on the known crystal structures of the T. thermophilus acyl-CoA synthetase with remarkably high levels of conservation of the catalytic site residues. To test the possible role of AasS in the fatty aldehyde-dependent bioluminescence pathway of V. harveyi, the chromosomal aasS gene of the organism was disrupted by insertion of a kanamycin cassette by homologous recombination. The resulting aasS::kan strains retained low levels of acyl-acyl carrier protein synthetase consistent with prior indications of a second such activity in this bacterium. The mutant strains grew normally and had normal levels of bioluminescence but were deficient in the incorporation of exogenous octanoic acid into the cellular phospholipids of V. harveyi, particularly at low octanoate concentrations. These data indicate that AasS is responsible for a high-affinity and high-capacity uptake system that efficiently converts exogenous fatty acids into acyl-ACP species competent to enter the fatty acid biosynthetic cycle.  相似文献   
995.
The isolation of high-trehalose-accumulating mutant A11 from Saccharomycopsis fibuligera sdu has been previously described. In this paper, accumulation of trehalose under various stress conditions in S. fibuligera A11 was investigated. Neither activation of trehalose-6-phosphate synthase (SfTps1) nor change in trehalose content was observed under stress exposure of S. fibuligera A11 cells. A fragment of the Sftps1 gene in this strain was also cloned by degenerate PCR using the CoDeHOP strategy and multiply-aligned Tps1 sequences. This sequence allowed us to investigate the expression of the Sftps1 gene, which was also kept constant under the various stress conditions. Altogether, these results indicate that trehalose metabolism in S. fibuligera A11 in response to stress conditions clearly differs from that of Saccharomyces cerevisiae and most other fungi. The expression of the Sftps1 gene was not responsive to different stress treatments.  相似文献   
996.
997.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are both low-molecular-weight lysophospholipid (LPL) ligands which are recognized by the Edg family of G protein-coupled receptors (GPCRs). In endothelial cells, these two ligands activate Edg receptors resulting in cell proliferation and cell migration. Interleukin-8 (IL-8) is a C-X-C chemokine and acts as a chemoattractant of neutrophils, whereas monocyte chemoattractant protein-1 (MCP-1) is a C-C chemokine and functions mainly as a chemoattractant of monocytes/macrophages. Both factors are secreted from endothelial cells and have been implicated in the processes leading to atherosclerosis. We examined the effects of LPLs on the expression of IL-8 and MCP-1, key regulators of leukocyte recruitment in human umbilical cord vein endothelial cells (HUVECs). Work illustrated in this article showed that LPA and S1P enhanced IL-8 and MCP-1 mRNA expressions, and protein secretions in dose- and time-dependent fashions. Maximal mRNA expression appeared at 16 hr post-ligand treatment. Using prior treatments with chemical inhibitors, LPLs enhanced IL-8 and MCP-1 expressions through a Gi-, Rho-, and NFkappaB-dependent mechanism. In a chemotaxis assay system, LPL treatments of endothelial cells enhanced monocyte recruitment through upregulating IL-8 and MCP-1 protein secretions. Pre-incubation with AF12198, an IL-1 receptor antagonist or IL-1 functional blocking antibody both suppressed the enhanced effects elicited by LPLs of IL-8 and MCP-1 mRNA expressions in HUVECs. These results suggest that LPLs released by activated platelets might enhance the IL-8- and MCP-1-dependent chemoattraction of monocytes toward the endothelium through an IL-1-dependent mechanism, which may play an important role in facilitating wound-healing and inflammation processes.  相似文献   
998.
Xu Z  Zhang C  Liu S  Zhou Y 《Proteins》2006,63(4):961-966
Solvent accessibility, one of the key properties of amino acid residues in proteins, can be used to assist protein structure prediction. Various approaches such as neural network, support vector machines, probability profiles, information theory, Bayesian theory, logistic function, and multiple linear regression have been developed for solvent accessibility prediction. In this article, a much simpler quadratic programming method based on the buriability parameter set of amino acid residues is developed. The new method, called QBES (Quadratic programming and Buriability Energy function for Solvent accessibility prediction), is reasonably accurate for predicting the real value of solvent accessibility. By using a dataset of 30 proteins to optimize three parameters, the average correlation coefficients between the predicted and actual solvent accessibility are about 0.5 for all four independent test sets ranging from 126 to 513 proteins. The method is efficient. It takes only 20 min for a regular PC to obtain results of 30 proteins with an average length of 263 amino acids. Although the proposed method is less accurate than a few more sophisticated methods based on neural network or support vector machines, this is the first attempt to predict solvent accessibility by energy optimization with constraints. Possible improvements and other applications of the method are discussed.  相似文献   
999.
In their vertebrate hosts, arboviruses such as Semliki Forest virus (SFV) (Togaviridae) generally counteract innate defenses and trigger cell death. In contrast, in mosquito cells, following an early phase of efficient virus production, a persistent infection with low levels of virus production is established. Whether arboviruses counteract RNA interference (RNAi), which provides an important antiviral defense system in mosquitoes, is an important question. Here we show that in Aedes albopictus-derived mosquito cells, SFV cannot prevent the establishment of an antiviral RNAi response or prevent the spread of protective antiviral double-stranded RNA/small interfering RNA (siRNA) from cell to cell, which can inhibit the replication of incoming virus. The expression of tombusvirus siRNA-binding protein p19 by SFV strongly enhanced virus spread between cultured cells rather than virus replication in initially infected cells. Our results indicate that the spread of the RNAi signal contributes to limiting virus dissemination.In animals, RNA interference (RNAi) was first described for Caenorhabditis elegans (27). The production or introduction of double-stranded RNA (dsRNA) in cells leads to the degradation of mRNAs containing homologous sequences by sequence-specific cleavage of mRNAs. Central to RNAi is the production of 21- to 26-nucleotide small interfering RNAs (siRNAs) from dsRNA and the assembly of an RNA-induced silencing complex (RISC), followed by the degradation of the target mRNA (23, 84). RNAi is a known antiviral strategy of plants (3, 53) and insects (21, 39, 51). Study of Drosophila melanogaster in particular has given important insights into RNAi responses against pathogenic viruses and viral RNAi inhibitors (31, 54, 83, 86, 91). RNAi is well characterized for Drosophila, and orthologs of antiviral RNAi genes have been found in Aedes and Culex spp. (13, 63).Arboviruses, or arthropod-borne viruses, are RNA viruses mainly of the families Bunyaviridae, Flaviviridae, and Togaviridae. The genus Alphavirus within the family Togaviridae contains several mosquito-borne pathogens: arboviruses such as Chikungunya virus (16) and equine encephalitis viruses (88). Replication of the prototype Sindbis virus and Semliki Forest virus (SFV) is well understood (44, 71, 74, 79). Their genome consists of a positive-stranded RNA with a 5′ cap and a 3′ poly(A) tail. The 5′ two-thirds encodes the nonstructural polyprotein P1234, which is cleaved into four replicase proteins, nsP1 to nsP4 (47, 58, 60). The structural polyprotein is encoded in the 3′ one-third of the genome and cleaved into capsid and glycoproteins after translation from a subgenomic mRNA (79). Cytoplasmic replication complexes are associated with cellular membranes (71). Viruses mature by budding at the plasma membrane (35).In nature, arboviruses are spread by arthropod vectors (predominantly mosquitoes, ticks, flies, and midges) to vertebrate hosts (87). Little is known about how arthropod cells react to arbovirus infection. In mosquito cell cultures, an acute phase with efficient virus production is generally followed by the establishment of a persistent infection with low levels of virus production (9). This is fundamentally different from the cytolytic events following arbovirus interactions with mammalian cells and pathogenic insect viruses with insect cells. Alphaviruses encode host response antagonists for mammalian cells (2, 7, 34, 38).RNAi has been described for mosquitoes (56) and, when induced before infection, antagonizes arboviruses and their replicons (1, 4, 14, 15, 29, 30, 32, 42, 64, 65). RNAi is also functional in various mosquito cell lines (1, 8, 43, 49, 52). In the absence of RNAi, alphavirus and flavivirus replication and/or dissemination is enhanced in both mosquitoes and Drosophila (14, 17, 31, 45, 72). RNAi inhibitors weakly enhance SFV replicon replication in tick and mosquito cells (5, 33), posing the questions of how, when, and where RNAi interferes with alphavirus infection in mosquito cells.Here we use an A. albopictus-derived mosquito cell line to study RNAi responses to SFV. Using reporter-based assays, we demonstrate that SFV cannot avoid or efficiently inhibit the establishment of an RNAi response. We also demonstrate that the RNAi signal can spread between mosquito cells. SFV cannot inhibit cell-to-cell spread of the RNAi signal, and spread of the virus-induced RNAi signal (dsRNA/siRNA) can inhibit the replication of incoming SFV in neighboring cells. Furthermore, we show that SFV expression of a siRNA-binding protein increases levels of virus replication mainly by enhancing virus spread between cells rather than replication in initially infected cells. Taken together, these findings suggest a novel mechanism, cell-to-cell spread of antiviral dsRNA/siRNA, by which RNAi limits SFV dissemination in mosquito cells.  相似文献   
1000.
This novel orange fluorescent protein (OFP) emits brilliant orange fluorescent light. OFP has high fluorescence quantum yield, fast maturation rate, and stability, which imply this protein should be the most favorable biotechnological tools used to investigate the function of target gene by visualizing, monitoring, and quantifying in living cells. B. mori, silkworm has been used as an important bioreactor for the production of recombinant proteins through baculovirus expression system (BES). In this paper, we used infection technique which introduced the baculovirus DNA into silkworms using a cationic lipofectin reagent instead of directly injecting the virus, and demonstrated a high-level expression of the orange fluorescent protein (OFP) gene in the Bombyx mori, silkworm larvae. When recombinant rBacmid/BmNPV/OFP DNA ranging from 50–100 ng/larval was injected, a sufficient OFP expression in hemolymph was harvested. The recombinant viruses could be obtained from the hemolymph of infected larvae and stored as seed which could be used for the large-scale expression. This procedure omitted the costly and labor-consumed insect cell culture. Further investigation of OFP should provide us with more insight in unlocking the mystery of the mechanisms of autocatalytic bioluminescence and its utilization in biotechnology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号