首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   15篇
  国内免费   1篇
  295篇
  2023年   7篇
  2022年   7篇
  2021年   18篇
  2020年   9篇
  2019年   16篇
  2018年   18篇
  2017年   16篇
  2016年   12篇
  2015年   16篇
  2014年   32篇
  2013年   21篇
  2012年   30篇
  2011年   22篇
  2010年   13篇
  2009年   9篇
  2008年   8篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   2篇
  2003年   7篇
  2002年   4篇
  2000年   2篇
  1993年   1篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有295条查询结果,搜索用时 15 毫秒
61.
Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide.  相似文献   
62.
63.
To provide mechanistic insight into the etiology of osteoporotic wedge fractures, we investigated the spatial distribution of tissue at the highest risk of initial failure within the human vertebral body for both forward flexion and uniform compression loading conditions. Micro-CT-based linear elastic finite element analysis was used to virtually load 22 human T9 vertebral bodies in either 5° of forward flexion or uniform compression; we also ran analyses replacing the simulated compliant disc (E=8 MPa) with stiff polymethylmethacrylate (PMMA, E=2500 MPa). As expected, we found that, compared to uniform compression, forward flexion increased the overall endplate axial load on the anterior half of the vertebra and shifted the spatial distribution of high-risk tissue within the vertebra towards the anterior aspect of the vertebral body. However, despite that shift, the high-risk tissue remained primarily within the central regions of the trabecular bone and endplates, and forward flexion only slightly altered the ratio of cortical-to-trabecular load sharing at the mid-vertebral level (mean±SD for n=22: 41.3±7.4% compression; 44.1±8.2% forward flexion). When the compliant disc was replaced with PMMA, the anterior shift of high-risk tissue was much more severe. We conclude that, for a compliant disc, a moderate degree of forward flexion does not appreciably alter the spatial distribution of stress within the vertebral body.  相似文献   
64.
Promoting complement (C) activation may enhance immunological mechanisms of anti-tumor Abs for tumor destruction. However, C activation components, such as C5a, trigger inflammation, which can promote tumor growth. We addressed the role of C5a on tumor growth by transfecting both human carcinoma and murine lymphoma with mouse C5a. In vitro growth kinetics of C5a, control vector, or parental cells revealed no significant differences. Tumor-bearing mice with C5a-transfected xenografted tumor cells had significantly less tumor burden as compared with control vector tumors. NK cells and macrophages infiltrated C5a-expressing tumors with significantly greater frequency, whereas vascular endothelial growth factor, arginase, and TNF-α production were significantly less. Tumor-bearing mice with high C5a-producing syngeneic lymphoma cells had significantly accelerated tumor progression with more Gr-1(+)CD11b(+) myeloid cells in the spleen and overall decreased CD4(+) and CD8(+) T cells in the tumor, tumor-draining lymph nodes, and the spleen. In contrast, tumor-bearing mice with low C5a-producing lymphoma cells had a significantly reduced tumor burden with increased IFN-γ-producing CD4(+) and CD8(+) T cells in the spleen and tumor-draining lymph nodes. These studies suggest concentration of local C5a within the tumor microenvironment is critical in determining its role in tumor progression.  相似文献   
65.
Obesity is a consequence of a complex interplay between the host genome and the prevalent obesogenic factors among the modern communities. The role of gut microbiota in the pathogenesis of the disorder was recently discovered; however, 16S-rRNA-based surveys revealed compelling but community-specific data. Considering this, despite unique diets, dietary habits and an uprising trend in obesity, the Indian counterparts are poorly studied. Here, we report a comparative analysis and quantification of dominant gut microbiota of lean, normal, obese and surgically treated obese individuals of Indian origin. Representative gut microbial diversity was assessed by sequencing fecal 16S rRNA libraries for each group (n=5) with a total of over 3000 sequences. We detected no evident trend in the distribution of the predominant bacterial phyla, Bacteroidetes and Firmicutes. At the genus level, the bacteria of genus Bacteroides were prominent among the obese individuals, which was further confirmed by qPCR (P less than 0.05). In addition, a remarkably high archaeal density with elevated fecal SCFA levels was also noted in the obese group. On the contrary, the treated-obese individuals exhibited comparatively reduced Bacteroides and archaeal counts along with reduced fecal SCFAs. In conclusion, the study successfully identified a representative microbial diversity in the Indian subjects and demonstrated the prominence of certain bacterial groups in obese individuals; nevertheless, further studies are essential to understand their role in obesity.  相似文献   
66.
Three new species of the genus BrevitobriusTsalolikhin, 1981 are described. Brevitobrilus glandulatus n. sp. is characterized by conspicuous sphincter between pars dilatata and uterus; two pairs of vaginal glands; spicules having elliptical capitula with small proximal stiffening piece; proximally-arcuate gubernaculum; S3 and S4 smaller than other supplements; S6 out of spicular range and 57-60 micropapillae. Brevitobrilus dimorphicus n. sp. is diagnosed by sexual dimorphism in labial sensilla and amphids; thick-walled rectum with a diverticulum protruding into intestinal lumen and males with boat-shaped spicules and S6 occasionally slightly smaller than other supplements. Brevitobrilus allahabadensis n. sp. possesses large amphids of 28-33% of corresponding labial diameter in both sexes; vagina and uterus with muscular, plicate walls; well developed sphincter between vas deferens and ejaculatory duct; capitulate spicules with sloping ventral and angular dorsal walls; S3, S4 and S6 smaller than other supplements, S6 close to cloaca and 28-37 micropapillae. The relationships of the species of genus Brevitobrilus have been assessed using morphological characters subjected to parsimony and a non cladistic key to identification of species is given.  相似文献   
67.
Caveolae are flask-shape membrane invaginations of the plasma membrane that have been implicated in endocytosis, transcytosis, and cell signaling. Recent years have witnessed the resurgence of studies on caveolae because they have been found to be involved in the uptake of some membrane components such as glycosphingolipids and integrins, as well as viruses, bacteria, and bacterial toxins. Accumulating evidence shows that endocytosis mediated by caveolae requires unique structural and signaling machinery (caveolin-1, src kinase), which indicates that caveolar endocytosis occurs through a mechanism which is distinct from other forms of lipid microdomain-associated, clathrin-independent endocytosis. Furthermore, a balance of glycosphingolipids, cholesterol, and caveolin-1 has been shown to be important in regulating caveolae endocytosis.  相似文献   
68.
Because pure cultures and a stable transformation system are not available for arbuscular mycorrhizal fungi, the role of their phosphate transporters for the symbiotic interaction with the plant up till now could not be studied. Here we report the cloning and the functional analysis of a gene encoding a phosphate transporter (PiPT) from the root endophytic fungus Piriformospora indica, which can be grown axenically. The PiPT polypeptide belongs to the major facilitator superfamily. Homology modeling reveals that PiPT exhibits twelve transmembrane helices divided into two halves connected by a large hydrophilic loop in the middle. The function of the protein encoded by PiPT was confirmed by complementation of a yeast phosphate transporter mutant. The kinetic analysis of PiPT (Km 25 μm) reveals that it belongs to the high affinity phosphate transporter family (Pht1). Expression of PiPT was localized to the external hyphae of P. indica colonized with maize plant root, which suggests that external hyphae are the initial site of phosphate uptake from the soil. To understand the physiological role of PiPT, knockdown transformants of the gene were prepared using electroporation and RNA interference. Knockdown transformants transported a significantly lower amount of phosphate to the host plant than wild-type P. indica. Higher amounts of phosphate were found in plants colonized with wild-type P. indica than that of non-colonized and plants colonized with knockdown PiPT P. indica. These observations suggest that PiPT is actively involved in the phosphate transportation and, in turn, P. indica helps improve the nutritional status of the host plant.  相似文献   
69.
The stable infection of host macrophages by Mycobacterium tuberculosis (Mtb) involves, and depends on, the attenuation of the diverse microbicidal responses mounted by the host cell. This is primarily achieved through targeted perturbations of the host cellular signaling machinery. Therefore, in view of the dependency of the pathogen on host molecules for its intracellular survival, we wanted to test whether targeting such factors could provide an alternate route for the therapeutic management of tuberculosis. To first identify components of the host signaling machinery that regulate intracellular survival of Mtb, we performed an siRNA screen against all known kinases and phosphatases in murine macrophages infected with the virulent strain, H37Rv. Several validated targets could be identified by this method where silencing led either to a significant decrease, or enhancement in the intracellular mycobacterial load. To further resolve the functional relevance of these targets, we also screened against these identified targets in cells infected with different strains of multiple drug-resistant mycobacteria which differed in terms of their intracellular growth properties. The results obtained subsequently allowed us to filter the core set of host regulatory molecules that functioned independently of the phenotypic variations exhibited by the pathogen. Then, using a combination of both in vitro and in vivo experimentation, we could demonstrate that at least some of these host factors provide attractive targets for anti-TB drug development. These results provide a “proof-of-concept” demonstration that targeting host factors subverted by intracellular Mtb provides an attractive and feasible strategy for the development of anti-tuberculosis drugs. Importantly, our findings also emphasize the advantage of such an approach by establishing its equal applicability to infections with Mtb strains exhibiting a range of phenotypic diversifications, including multiple drug-resistance. Thus the host factors identified here may potentially be exploited for the development of anti-tuberculosis drugs.  相似文献   
70.
Conogethes punctiferalis (Guénee) is a critical pest that commonly infests castor (Ricinus communis Linnaeus) and cardamom (Elettaria cardamomum Maton) in India. The moths of both castor and cardamom appear to be similar in wing pattern and color. However, the results of behavioral studies elicited a doubt that there may be differences in terms of host specialization. In the present study, we conducted morphological studies and DNA barcode analyses using cytochrome oxidase I gene, which unraveled the mystery of C. punctiferalis breeding on castor and cardamom. The differences in male aedeagus and female bursae were prominent, yet, not sufficient enough to say that they are different species. The results showed high haplotype diversity (0.817 ± 0.073) and nucleotide diversity (0.0285 ± 0.002) in C. punctiferalis. In addition, topologies of neighbor-joining trees indicate that Conogethes sp. breeding on castor belongs to C. punctiferalis while those on cardamom are of a separate clade. Further genetic analysis revealed significant genetic differentiations among the two sampled populations, reflecting limited gene flow. Neutrality tests and mismatch distributions showed population expansion in C. punctiferalis, while the results of an analysis of molecular variance (AMOVA) indicated the existence of significant genetic variation among the examined host races. Conclusively, analysis using mitochondrial DNA showed an amount of genetic divergence between the two host-associated populations compatible with cryptic species rather than host races.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号