首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7560篇
  免费   817篇
  2022年   50篇
  2021年   128篇
  2020年   60篇
  2019年   82篇
  2018年   108篇
  2017年   91篇
  2016年   179篇
  2015年   273篇
  2014年   301篇
  2013年   366篇
  2012年   446篇
  2011年   497篇
  2010年   304篇
  2009年   279篇
  2008年   386篇
  2007年   383篇
  2006年   321篇
  2005年   344篇
  2004年   356篇
  2003年   325篇
  2002年   340篇
  2001年   123篇
  2000年   117篇
  1999年   145篇
  1998年   137篇
  1997年   105篇
  1996年   98篇
  1995年   76篇
  1994年   88篇
  1993年   80篇
  1992年   112篇
  1991年   88篇
  1990年   122篇
  1989年   93篇
  1988年   92篇
  1987年   80篇
  1986年   72篇
  1985年   85篇
  1984年   90篇
  1983年   59篇
  1982年   67篇
  1981年   50篇
  1980年   43篇
  1979年   45篇
  1978年   45篇
  1977年   58篇
  1976年   43篇
  1973年   54篇
  1972年   39篇
  1970年   44篇
排序方式: 共有8377条查询结果,搜索用时 15 毫秒
991.
Azospirillum brasilense is a plant growth promoting rhizobacterium (PGPR) that is being increasingly used in agriculture in a commercial scale. Recent research has elucidated key properties of A.?brasilense that contribute to its ability to adapt to the rhizosphere habitat and to promote plant growth. They include synthesis of the auxin indole-3-acetic acid, nitric oxide, carotenoids, and a range of cell surface components as well as the ability to undergo phenotypic variation. Storage and utilization of polybetahydroxyalkanoate polymers are important for the shelf life of the bacteria in production of inoculants, products containing bacterial cells in a suitable carrier for agricultural use. Azospirillum brasilense is able to fix nitrogen, but despite some controversy, as judging from most systems evaluated so far, contribution of fixed nitrogen by this bacterium does not seem to play a major role in plant growth promotion. In this review, we focus on recent advances in the understanding of physiological properties of A.?brasilense that are important for rhizosphere performance and successful interactions with plant roots.  相似文献   
992.
RC Reid 《Neuron》2012,75(2):209-217
"Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex" by Hubel and Wiesel (1962) reported several important discoveries: orientation columns, the distinct structures of simple and complex receptive fields, and binocular integration. But perhaps the paper's greatest influence came from the concept of functional architecture (the complex relationship between in?vivo physiology and the spatial arrangement of neurons) and several models of functionally specific connectivity. They thus identified two distinct concepts, topographic specificity and functional specificity, which together with cell-type specificity constitute the major determinants of nonrandom cortical connectivity. Orientation columns are iconic examples of topographic specificity, whereby axons within a column connect with cells of a single orientation preference. Hubel and Wiesel also saw the need for functional specificity at a finer scale in their model of thalamic inputs to simple cells, verified in the 1990s. The difficult but potentially more important question of functional specificity between cortical neurons is only now becoming tractable with new experimental techniques.  相似文献   
993.
994.
995.
Leukocytes arrested on inflamed endothelium via integrins are subjected to force imparted by flowing blood. How leukocytes respond to this force and resist detachment is poorly understood. Live-cell imaging with Lifeact-transfected U937 cells revealed that force triggers actin polymerization at upstream α4β1 integrin adhesion sites and the adjacent cortical cytoskeleton. Scanning electron microscopy revealed that this culminates in the formation of structures that anchor monocyte adhesion. Inhibition of actin polymerization resulted in cell deformation, displacement, and detachment. Transfection of dominant-negative constructs and inhibition of function or expression revealed key signaling steps required for upstream actin polymerization and adhesion stabilization. These included activation of Rap1, phosphoinositide 3-kinase γ isoform, and Rac but not Cdc42. Thus, rapid signaling and structural adaptations enable leukocytes to stabilize adhesion and resist detachment forces.  相似文献   
996.
Activin receptor-like kinase 1 (ALK1), an endothelial cell-specific type I receptor of the TGF-β superfamily, is an important regulator of normal blood vessel development as well as pathological tumor angiogenesis. As such, ALK1 is an important therapeutic target. Thus, several ALK1-directed agents are currently in clinical trials as anti-angiogenic cancer therapeutics. Given the biological and clinical importance of the ALK1 signaling pathway, we sought to elucidate the biophysical and structural basis underlying ALK1 signaling. The TGF-β family ligands BMP9 and BMP10 as well as the three type II TGF-β family receptors ActRIIA, ActRIIB, and BMPRII have been implicated in ALK1 signaling. Here, we provide a kinetic and thermodynamic analysis of BMP9 and BMP10 interactions with ALK1 and type II receptors. Our data show that BMP9 displays a significant discrimination in type II receptor binding, whereas BMP10 does not. We also report the crystal structure of a fully assembled ternary complex of BMP9 with the extracellular domains of ALK1 and ActRIIB. The structure reveals that the high specificity of ALK1 for BMP9/10 is determined by a novel orientation of ALK1 with respect to BMP9, which leads to a unique set of receptor-ligand interactions. In addition, the structure explains how BMP9 discriminates between low and high affinity type II receptors. Taken together, our findings provide structural and mechanistic insights into ALK1 signaling that could serve as a basis for novel anti-angiogenic therapies.  相似文献   
997.
Mitochondrial homeostasis via mitochondrial dynamics and quality control is crucial to normal cellular functions. Mitophagy (mitochondria removed by autophagy) stimulated by a mitochondrial uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP), requires Parkin, but it is not clear why Parkin is crucial to this process. We found that in the absence of Parkin, carbonyl cyanide m-chlorophenylhydrazone induced the formation of mitochondrial spheroids. Mitochondrial spheroid formation is also induced in vivo in the liver by acetaminophen overdose, a condition causing severe oxidative mitochondrial damages and liver injury. Mitochondrial spheroids could undergo a maturation process by interactions with acidic compartments. The formation of this new structure required reactive oxygen species and mitofusins. Parkin suppressed these mitochondrial dynamics by promoting mitofusin degradation. Consistently, genetic deletion of mitofusins without concomitant expression of Parkin was sufficient to prevent mitochondrial spheroid formation and resumed mitophagy. Mitochondrial spheroid formation and mitophagy could represent different strategies of mitochondrial homeostatic response to oxidative stress and are reciprocally regulated by mitofusins and Parkin.  相似文献   
998.
In 1999, mutations in the gene encoding the microtubule severing AAA ATPase spastin were identified as a major cause of a genetic neurodegenerative condition termed hereditary spastic paraplegia (HSP). This finding stimulated intense study of the spastin protein and over the last decade, a combination of cell biological, in vivo, in vitro and structural studies have provided important mechanistic insights into the cellular functions of the protein, as well as elucidating cell biological pathways that might be involved in axonal maintenance and degeneration. Roles for spastin have emerged in shaping the endoplasmic reticulum and the abscission stage of cytokinesis, in which spastin appears to couple membrane modelling to microtubule regulation by severing.  相似文献   
999.
Focal adhesion kinase (FAK), a key regulator of cell adhesion and migration, is overexpressed in many types of cancer. The C-terminal focal adhesion targeting (FAT) domain of FAK is necessary for proper localization of FAK to focal adhesions and subsequent activation. Phosphorylation of Y926 in the FAT domain by the tyrosine kinase Src has been shown to promote metastasis and invasion in vivo by linking the FAT domain to the MAPK pathway via its interaction with growth factor receptor-bound protein 2. Several groups have reported that inherent conformational dynamics in the FAT domain likely regulate phosphorylation of Y926; however, what regulates these dynamics is unknown. In this paper, we demonstrate that there are two sites of in vitro Src-mediated phosphorylation in the FAT domain: Y926, which has been shown to affect FAK function in vivo, and Y1008, which has no known biological role. The phosphorylation of these two tyrosine residues is pH-dependent, but this does not reflect the pH dependence of Src kinase activity. Circular dichroism and nuclear magnetic resonance data indicate that the stability and conformational dynamics of the FAT domain are sensitive to changes in pH over a physiological pH range. In particular, regions of the FAT domain previously shown to regulate phosphorylation of Y926 as well as regions near Y1008 show pH-dependent dynamics on the microsecond to millisecond time scale.  相似文献   
1000.
We take the advantage of pyrene's unique spectral properties as a reliable polarity indicator to monitor pyrene localizations in the membrane depth by using wavelength selective fluorescence approach. We show that fine structure of pyrene fluorescence emission spectra and excimerization rate in model and native phospholipid membranes depend on the excitation wavelength. This phenomenon is not observed in neat solvents. In membranes, the dependence on the excitation wavelength reflects selective excitation of pyrene molecules located close to the membrane-water polar interface, or deep in the hydrophobic core of the membrane, verified with the aid of pyrene derivatives of fatty acids of various lengths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号