首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5516篇
  免费   585篇
  2022年   52篇
  2021年   109篇
  2020年   50篇
  2019年   66篇
  2018年   79篇
  2017年   54篇
  2016年   114篇
  2015年   203篇
  2014年   247篇
  2013年   281篇
  2012年   359篇
  2011年   401篇
  2010年   246篇
  2009年   224篇
  2008年   303篇
  2007年   319篇
  2006年   267篇
  2005年   301篇
  2004年   293篇
  2003年   273篇
  2002年   283篇
  2001年   75篇
  2000年   75篇
  1999年   82篇
  1998年   96篇
  1997年   61篇
  1996年   54篇
  1995年   46篇
  1994年   57篇
  1993年   54篇
  1992年   52篇
  1991年   48篇
  1990年   68篇
  1989年   56篇
  1988年   46篇
  1987年   35篇
  1986年   53篇
  1985年   48篇
  1984年   46篇
  1983年   44篇
  1982年   40篇
  1981年   35篇
  1980年   26篇
  1978年   30篇
  1976年   30篇
  1975年   28篇
  1974年   23篇
  1973年   35篇
  1972年   25篇
  1970年   22篇
排序方式: 共有6101条查询结果,搜索用时 15 毫秒
991.

Purpose of Review

Resistance to antifungal drugs amongst Candida species is a growing concern, and azole resistance may be emerging in Cryptococcus species. This review provides a contemporary perspective, relevant to the clinical mycology laboratory, of antifungal susceptibility testing of these fungi, focussing on the challenges of phenotypic and genotypic methodologies to detect drug resistance.

Recent Findings

Standardised CLSI and EUCAST broth microdilution (BMD) susceptibility testing methods are the benchmark to determine clinical breakpoints (CBPs) and/or epidemiological cut-off values (ECVs) MICs for Candida and Cryptococcus spp. Commercial methods may be used but caution is required when employing BMD CBPs/ECVs to interpret results. Species-specific CBPs/ECVs for Candida spp. generally correlate well with predicting likelihood of therapeutic failure or of presence of a drug resistance mechanism with the exception of the echinocandins where the presence of specific FKS gene mutations and not the MIC correlates most accurately with clinical outcome. The relationship of presence of one or more mechanisms of azole resistance and drug MICs is uncertain. Next generation sequencing technology is offering insights into the relationships between susceptibility results obtained by phenotypic and genotypic methods. For Cryptococcus spp., CBPs are not established but species- and genetic type-specific EVCs are useful for guiding therapy where clinically indicated. Isolates of genotype VGII appear to exhibit the highest MICs.

Summary

Antifungal susceptibility testing of yeasts is important to detect drug resistance. For Candida spp., MICs have clinical utility for the azoles but detecting echinocandin resistance by genotypic methods is preferred. For Cryptococcus spp., ECVs are useful in guiding therapy.
  相似文献   
992.
Multiple strains of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis isolated from animal, clinical, or food samples have been analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Whole bacterial cells were harvested from colonies or confluent growth on agar and transferred directly into solvent and then to a spot of dried 3-methoxy-4-hydroxycinnamic acid (matrix). Multiple ions in the 5,000- to 15,000-Da mass range were evident in spectra for each strain; one or two ions in the 9,500- to 11,000-Da range were consistently high intensity. “Species-identifying” biomarker ions (SIBIs) were evident from analyses of multiple reference strains for each of the six species, including the genome strains C. jejuni NCTC 11168 and C. jejuni RM1221. Strains grown on nine different combinations of media and atmospheres yielded SIBI masses within ±5 Da with external instrument calibration. The highest-intensity C. jejuni SIBIs were cytosolic proteins, including GroES, HU/HCj, and RplL. Multiple intraspecies SIBIs, corresponding probably to nonsynonymous nucleotide polymorphisms, also provided some intraspecies strain differentiation. MALDI-TOF MS analysis of 75 additional Campylobacter strains isolated from humans, poultry, swine, dogs, and cats revealed (i) associations of SIBI type with source, (ii) strains previously speciated incorrectly, and (iii) “strains” composed of more than one species. MALDI-TOF MS provides an accurate, sensitive, and rapid method for identification of multiple Campylobacter species relevant to public health and food safety.  相似文献   
993.
Recombinant interferon alpha-2 (IFN-alpha2) has proven useful for treating a variety of human cancers and viral diseases. IFN-alpha2 has a short circulating half-life in vivo, which necessitates daily or thrice weekly administration to patients. It is possible to extend the circulating half-life of IFN-alpha2 by random modification of lysine residues in the protein with polyethylene glycol (PEG); however, such preparations have heterogeneous structures and low specific activities, and may not provide optimal therapeutic benefits to patients. A long-acting, site-specific, monoPEGylated IFN-alpha2 protein has now been created by targeted attachment of a 20 kDa or a 40 kDa maleimide-PEG to a cysteine analogue of IFN-alpha2, M111C. In vitro bioactivities of the purified 20 kDa and 40 kDa PEG-M111C proteins were within 2- to 3-fold of those of wild type IFN-alpha2 and 7- to 10-fold better than that of a 40 kDa PEG IFN-alpha2 protein created using nontargeted, amine-PEGylation methodology. The 20 kDa and 40 kDa PEG-M111C proteins demonstrated 26- to 38-fold longer half-lives, respectively, than IFN-alpha2 following subcutaneous administration to rats. The 20 kDa PEG M111C protein inhibited growth of human NIH:OVCAR-3 cells transplanted into nude mice by >90%, as measured by tumor size, tumor weight, and number of animals with detectable tumors at necropsy, and was significantly more effective than a comparable dose of IFN-alpha2. These data extend our previous findings that bioactivity of IFN-alpha2 can be largely preserved by targeted attachment of PEG moieties to nonessential sites in the protein and provide evidence that site-specific PEGylated IFN-alpha2 proteins possess enhanced tumoricidal properties in vivo.  相似文献   
994.
Two functional polymorphisms within the manganese superoxide dismutase (MnSOD) gene have been reported to lead to increased oxidative stress damage. The MnSOD 58T > C single nucleotide polymorphism (SNP) within exon 3 changes isoleucine to threonine, leading to decreased thermal stability and reduced enzymatic activity in vivo and in vitro. The MnSOD 60C > T polymorphism within exon 3 changes leucine to phenylalanine, rendering the protein sensitive to redox regulation by intracellular thiols. Thus, the goal of this study was to evaluate the 58T > C and 60C > T MnSOD polymorphisms in a large case-control study. Taqman allelic discrimination assays were developed to identify the 58T > C and 60C > T SNPs in exon 3. Two hundred and eight lung cancer cases and 141 controls were evaluated for these two SNPs, and all 349 subjects were of the wild-type homozygous genotype for both 58C and 60T in exon 3. This study suggests that although the 58T > C and 60C > T polymorphisms reduce MnSOD enzymatic activity, these polymorphisms were not identified in the present case-control study population.  相似文献   
995.
Currently, rDNA-ITS sequence analysis seems to be the most appropriate method for comprehensive classification of Rhizoctonia spp. Our previous review article was concerned with detailed analysis of multinucleate Rhizoctonia (MNR), and the current review complements the previous one with detailed analysis of binucleate Rhizoctonia (BNR) (teleomorphs: Ceratobasidium spp. and Tulasnella spp.) and uninucleate Rhizoctonia (UNR) (teleomorph: C. bicorne). Data of all the appropriate BNR and UNR accumulated in GenBank were analyzed together in neighbor-joining (NJ) trees supplemented with percent sequence similarity within and among the anastomosis groups (AGs) and subgroups. Generally, the clusters of the isolate sequences supported the genetic basis for the AG based on hyphal fusion anastomosis. Comprehensive interrelationships among all the currently available MNR, BNR, and UNR groups and subgroups in GenBank were subsequently analyzed in NJ and maximum-parsimony (MP) trees, showing the genetic relatedness among the different groups and indicating possible bridging groups between MNR, BNR, and UNR. The review also indicates serious inaccuracies in designation of sequences of some isolates deposited in GenBank. Several additional teleomorph genera with Rhizoctonia spp. anamorphs have also been reported in the literature. However, as they have not been intensively studied, there were no available data on their rDNA-ITS sequences that could be included in this review.  相似文献   
996.
Leishmania sand fly interaction: progress and challenges   总被引:1,自引:0,他引:1  
Complex interactions occurs between Leishmania parasites and their sand fly vectors. Promastigotes of Leishmania live exclusively within the gut, possess flagella and are motile, and kinesins, kinases and G proteins have been described that play a role in regulating flagellar assembly. Movement within the gut is not random: promastigotes can detect gradients of solutes via chemotaxis and osmotaxis. Further they use their flagella to attach to the fly midgut using surface glyconconjugates, a key step in establishment of the infection. Differentiation of mammal-infective stages is characterised by significant biochemical and cellular remodelling. Further, the parasites can manipulate the behaviour of the vector to maximise their transmission, and flies may even deliver altruistic apoptotic forms to aid transmission of infective stages.  相似文献   
997.
RPP13, a member of the cytoplasmic class of disease resistance genes, encodes one of the most variable Arabidopsis proteins so far identified. This variability is matched in ATR13, the protein from the oomycete downy mildew pathogen Hyaloperonospora parasitica recognized by RPP13, suggesting that these proteins are involved in tight reciprocal coevolution. ATR13 exhibits five domains: an N-terminal signal peptide, an RXLR motif, a heptad leucine/isoleucine repeat, an 11-amino-acid repeated sequence and a C-terminal domain. We show that the conserved RXLR-containing domain is dispensable for ATR13-mediated recognition, consistent with its role in transport into the plant cytoplasm. Sequencing ATR13 from 16 isolates of H. parasitica revealed high levels of amino acid diversity across the entire protein. The leucines/isoleucines of the heptad leucine repeat were conserved, and mutation of particular leucine or isoleucine residues altered recognition by RPP13. Natural variation has not exploited this route to detection avoidance, suggesting a key role of this domain in pathogenicity. The extensive variation in the 11-amino-acid repeat units did not affect RPP13 recognition. Domain swap analysis showed that recognition specificity lay in the C-terminal domain of ATR13. Variation analyses combined with functional assays allowed the identification of four amino acid positions that may play a role in recognition specificity. Site-directed mutagenesis confirmed that a threonine residue is absolutely required for RPP13 recognition and that recognition can be modulated by the presence of either an arginine or glutamic acid at other sites. Mutations in these three amino acids had no effect on the interaction of ATR13 with a resistance gene unlinked to RPP13, consistent with their critical role in determining RPP13-Nd recognition specificity.  相似文献   
998.
999.
1000.
Mass spectrometry-based proteomics experiments have become an important tool for studying biological systems. Identifying the proteins in complex mixtures by assigning peptide fragmentation spectra to peptide sequences is an important step in the proteomics process. The 1-2 ppm mass-accuracy of hybrid instruments, like the LTQ-FT, has been cited as a key factor in their ability to identify a larger number of peptides with greater confidence than competing instruments. However, in replicate experiments of an 18-protein mixture, we note parent masses deviate 171 ppm, on average, for ion-trap data directed identifications and 8 ppm, on average, for preview Fourier transform (FT) data directed identifications. These deviations are neither caused by poor calibration nor by excessive ion-loading and are most likely due to errors in parent mass estimation. To improve these deviations, we introduce msPrefix, a program to re-estimate a peptide's parent mass from an associated high-accuracy full-scan survey spectrum. In 18-protein mixture experiments, msPrefix parent mass estimates deviate only 1 ppm, on average, from the identified peptides. In a cell lysate experiment searched with a tolerance of 50 ppm, 2295 peptides were confidently identified using native data and 4560 using msPrefixed data. Likewise, in a plasma experiment searched with a tolerance of 50 ppm, 326 peptides were identified using native data and 1216 using msPrefixed data. msPrefix is also able to determine which MS/MS spectra were possibly derived from multiple precursor ions. In complex mixture experiments, we demonstrate that more than 50% of triggered MS/MS may have had multiple precursor ions and note that spectra with multiple candidate ions are less likely to result in an identification using TANDEM. These results demonstrate integration of msPrefix into traditional shotgun proteomics workflows significantly improves identification results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号