首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   537篇
  免费   37篇
  2022年   15篇
  2021年   17篇
  2020年   4篇
  2019年   5篇
  2018年   9篇
  2016年   8篇
  2015年   21篇
  2014年   22篇
  2013年   37篇
  2012年   43篇
  2011年   35篇
  2010年   23篇
  2009年   17篇
  2008年   27篇
  2007年   42篇
  2006年   21篇
  2005年   23篇
  2004年   20篇
  2003年   9篇
  2002年   7篇
  2001年   4篇
  2000年   5篇
  1999年   8篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1989年   3篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1982年   5篇
  1981年   5篇
  1979年   3篇
  1978年   4篇
  1977年   6篇
  1976年   3篇
  1975年   5篇
  1974年   9篇
  1973年   5篇
  1971年   3篇
  1969年   4篇
  1968年   5篇
  1966年   4篇
  1965年   5篇
  1931年   8篇
排序方式: 共有574条查询结果,搜索用时 15 毫秒
61.
Neurotensin (NT) and epidermal growth factor (EGF) induced rapid extracellular-regulated protein kinase (ERK) activation through different signaling pathways in the K-Ras mutated human pancreatic carcinoma cell lines PANC-1 and MIA PaCa-2. NT stimulated ERK activation via a protein kinase C (PKC)-dependent (but EGF receptor-independent) pathway in PANC-1 and MIA PaCa-2 cells, whereas EGF promoted ERK activation through a PKC-independent pathway in these cells. Concomitant stimulation of these cells with NT and EGF induced a striking increase in the duration of ERK pathway activation as compared with that obtained in cells treated with each agonist alone. Stimulation with NT + EGF promoted synergistic stimulation of DNA synthesis and anchorage-independent growth. Addition of the MEK inhibitor U0126, either prior to stimulation with NT + EGF or 2 h after stimulation with NT + EGF prevented the synergistic increase in DNA synthesis and suppressed the sustained phase of ERK activation. Furthermore, treatment with the selective PKC inhibitor GF-1 converted the sustained ERK activation in response to NT and EGF into a transient signal and also abrogated the synergistic increase in DNA synthesis. Collectively, our results suggest that the sustained phase of ERK signaling mediates the synergistic effects of NT and EGF on DNA synthesis in pancreatic cancer cells.  相似文献   
62.
The GDP-GTP exchange activity of the retinal G protein, transducin, is markedly accelerated by the photoreceptor rhodopsin in the first step of visual transduction. The x-ray structures for the alpha subunits of transducin (alpha(T)) and other G proteins suggest that the nucleotide-binding (Ras-like) domain and a large helical domain form a "clam shell" that buries the GDP molecule. Thus, receptor-promoted G protein activation may involve "opening the clam shell" to facilitate GDP dissociation. In this study, we have examined whether perturbing the linker regions connecting the Ras-like and helical domains of Galpha subunits gives rise to a more readily exchangeable state. The sole glycine residues in linkers 1 and 2 were individually changed to proline residues within an alpha(T)/alpha(i1) chimera (designated alpha(T)(*)). Both alpha(T)(*) linker mutants showed significant increases in their basal rates of GDP-GTP exchange when compared either to retinal alpha(T) or recombinant alpha(T)(*). The alpha(T)(*) linker mutants were responsive to aluminum fluoride, which binds to alpha-GDP complexes and induces changes in Switch 2. Although both linker mutants were further activated by light-activated rhodopsin together with the betagamma complex, their activation was not influenced by betagamma alone, arguing against the idea that the betagamma complex helps to pry apart the helical and Ras-like domains of Galpha subunits. Once activated, the alpha(T)(*) linker mutants were able to stimulate the cyclic GMP phosphodiesterase. Overall, these findings highlight a new class of activated Galpha mutants that constitutively exchange GDP for GTP and should prove valuable in studying different G protein-signaling systems.  相似文献   
63.
Singh N  Jabeen T  Somvanshi RK  Sharma S  Dey S  Singh TP 《Biochemistry》2004,43(46):14577-14583
Phospholipase A(2) (PLA(2); EC 3.1.1.4) is a key enzyme involved in the production of proinflammatory mediators known as eicosanoids. The binding of the substrate to PLA(2) occurs through a well-formed hydrophobic channel. To determine the viability of PLA(2) as a target molecule for the structure-based drug design against inflammation, arthritis, and rheumatism, the crystal structure of the complex of PLA(2) with a known anti-inflammatory compound oxyphenbutazone (OPB), which has been determined at 1.6 A resolution. The structure has been refined to an R factor of 0.209. The structure contains 1 molecule each of PLA(2) and OPB with 2 sulfate ions and 111 water molecules. The binding studies using surface plasmon resonance show that OPB binds to PLA(2) with a dissociation constant of 6.4 x 10(-8) M. The structure determination has revealed the presence of an OPB molecule at the binding site of PLA(2). It fits well in the binding region, thus displaying a high level of complementarity. The structure also indicates that OPB works as a competitive inhibitor. A large number of hydrophobic interactions between the enzyme and the OPB molecule have been observed. The hydrophobic interactions involving residues Tyr(52) and Lys(69) with OPB are particularly noteworthy. Other residues of the hydrophobic channel such as Leu(3), Phe(5), Met(8), Ile(9), and Ala(18) are also interacting extensively with the inhibitor. The crystal structure clearly reveals that the binding of OPB to PLA(2) is specific in nature and possibly suggests that the basis of its anti-inflammatory effects may be due to its binding to PLA(2) as well.  相似文献   
64.
The iron binding and release of serum transferrin are pH-dependent and accompanied by a conformational change between the iron-bound (holo-) and iron-free (apo-) forms. We have determined the crystal structure of apo-hen serum transferrin (hAST) at 3.5A resolution, which is the first reported structure to date of any full molecule of an apo-serum transferrin and studied its pH-dependent iron release by UV-vis absorption and near UV-CD spectroscopy. The crystal structure of hAST shows that both the lobes adopt an open conformation and the relative orientations of the domains are different from those of apo-human serum transferrin and human apolactoferrin but similar to that of hen apo-ovotransferrin. Spectroscopic analysis reveals that in hen serum transferrin, release of the first iron starts at a pH approximately 6.5 and continues over a broad pH range (6.5-5.2). The complete release of the iron, however, occurs at pH approximately 4.0. The near UV-CD spectra show alterations in the microenvironment of the aromatic residues surrounding the iron-binding sites.  相似文献   
65.
Recent studies in protein folding suggest that native state topology plays a dominant role in determining the folding mechanism, yet an analogous statement has not been made for RNA, most likely due to the strong coupling between the ionic environment and conformational energetics that make RNA folding more complex than protein folding. Applying a distributed computing architecture to sample nearly 5000 complete tRNA folding events using a minimalist, atomistic model, we have characterized the role of native topology in tRNA folding dynamics: the simulated bulk folding behavior predicts well the experimentally observed folding mechanism. In contrast, single-molecule folding events display multiple discrete folding transitions and compose a largely diverse, heterogeneous dynamic ensemble. This both supports an emerging view of heterogeneous folding dynamics at the microscopic level and highlights the need for single-molecule experiments and both single-molecule and bulk simulations in interpreting bulk experimental measurements.  相似文献   
66.
The histone-like protein HU from Escherichia coli is involved in DNA compaction and in processes such as DNA repair and recombination. Its participation in these events is reflected in its ability to bend DNA and in its preferred binding to DNA junctions and DNA with single-strand breaks. Deinococcus radiodurans is unique in its ability to reconstitute its genome from double strand breaks incurred after exposure to ionizing radiation. Using electrophoretic mobility shift assays (EMSA), we show that D.radiodurans HU (DrHU) binds preferentially only to DNA junctions, with half-maximal saturation of 18 nM. In distinct contrast to E.coli HU, DrHU does not exhibit a marked preference for DNA with nicks or gaps compared to perfect duplex DNA, nor is it able to mediate circularization of linear duplex DNA. These unexpected properties identify DrHU as the first member of the HU protein family not to serve an architectural role and point to its potential participation in DNA recombination events. Our data also point to a mechanism whereby differential target site selection by HU proteins is achieved and suggest that the substrate specificity of HU proteins should be expected to vary as a consequence of their individual capacity for inducing the required DNA bend.  相似文献   
67.
DFT calculations on the free energy profile for the catalytic reduction of hydrazine to ammonia, the late stage of nitrogen fixation, mediated by vanadium (III) thiolate complexes VPS3 (1) and VNS3 (7) were carried out. The calculated energy profile revealed that all the reduction steps were exergonic while the protonation steps were endergonic. The generation of first equivalent of ammonia and the reduction of the cationic complex [V-NH3]+ to the neutral V-NH3 species were found to be the most exergonic of all the steps. Based on the calculated energy profile, both VPS3 and VNS3 were found to be catalytically active for the reduction of hydrazine to ammonia, although some quantitative differences in free energy profile had been observed.  相似文献   
68.
The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD. gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions.  相似文献   
69.
Posterior cerebellar lesion induced severe focal inflammatory ulcers at the stomach associated with extensive damage of the surface epithelial cells, leading to focal necrotic ulcers. The ulcer index increased maximally and progressively between day 7 and day 14 after lesion. The total mucosal mast cell and degranulated mucosal mast cell increased maximally on day 7 and progressively declined from day 14 to day 21. Gastric histamine content was also significantly increased on day 7 and 14. A significant reduction in mucous content (total CHO:P) was observed within 7-28 days after lesion. The results suggest that the gastric mucosal mast cells play an important role in ulcerogenesis induced by cerebellar lesion.  相似文献   
70.
Heparin is naturally occurring polysaccharides which interacts with seminal plasma proteins and regulate multiple steps in fertilization process. Qualitative and quantitative information regarding the affinity for heparin-seminal plasma proteins interactions is not generally well documented and there are no reports of a comprehensive analysis of these interactions in human seminal plasma. Such information should improve our understanding of how GAGs especially heparin present in the reproductive tract regulate fertilization. In this study, we use SPR to study interactions of heparin with various seminal plasma heparin-binding proteins (HBPs). HBPs like lactoferrin (LF), fibronectin fragment (FNIII), semenogelinI (SGI) and prostate specific antigen (PSA) all bind heparin with different binding kinetics and affinities. Kinetic data suggests that FNIII binds heparin with a high affinity (KD=3.2 nM), while PSA binds heparin with a micromolar affinity (KD=11.1 μM). Preincubation of SGI with heparin inhibits the binding of SGI to immobilized PSA in a dosedependent manner, while FNIII incubated with heparin binds with an increased affinity to PSA. Solution-competition studies show that the minimum size of a heparin oligosaccharide capable of binding with PSA is greater than a tetrasaccharide, with LF and SGI is larger than a hexasaccharide and for FNIII is larger than an octasaccharide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号