首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2591篇
  免费   214篇
  国内免费   1篇
  2022年   24篇
  2021年   52篇
  2020年   27篇
  2019年   39篇
  2018年   53篇
  2017年   44篇
  2016年   76篇
  2015年   88篇
  2014年   114篇
  2013年   145篇
  2012年   178篇
  2011年   158篇
  2010年   95篇
  2009年   97篇
  2008年   118篇
  2007年   104篇
  2006年   93篇
  2005年   84篇
  2004年   89篇
  2003年   63篇
  2002年   72篇
  2001年   63篇
  2000年   58篇
  1999年   47篇
  1998年   18篇
  1997年   28篇
  1996年   20篇
  1993年   18篇
  1992年   54篇
  1991年   27篇
  1990年   30篇
  1989年   29篇
  1988年   40篇
  1987年   31篇
  1986年   27篇
  1985年   48篇
  1984年   27篇
  1983年   34篇
  1982年   19篇
  1981年   30篇
  1980年   20篇
  1979年   30篇
  1978年   30篇
  1977年   21篇
  1976年   19篇
  1975年   29篇
  1974年   16篇
  1973年   23篇
  1972年   22篇
  1971年   19篇
排序方式: 共有2806条查询结果,搜索用时 234 毫秒
991.
Benthos inhabiting brackishwater ecosystems is subjected to transitional environment of freshwater and saltwater conditions. In the present paper the effects of environmental variables were studied along with anthropogenic activities, selecting two man-made fishery systems (bheri) and one natural estuarine system at Canning town, West Bengal, India. 11 water parameters and five sediment parameters were studied. Qualitative study of macrozoobenthos indicates that natural estuarine ecosystem harbours 57 species of nine groups while brackishwater impoundments are inhabited by 17–20 species only. The population density of the commonly occurring macrobenthic species reveals variation with respect to season and sites. Pearson’s correlation coefficient analysis and canonical correspondence analysis results suggest that more than 15 macrozoobenthic species bear significant correlation with one or more water and sediment parameters, within which 12 species showed significant correlation in estuarine ecosystem indicating more environmental stress in impoundments than estuary.  相似文献   
992.
Regulatory T‐cell (Treg, CD4+CD25+) dysfunction is suspected to play a key role in immune senescence and contributes to increased susceptibility to diseases with age by suppressing T‐cell responses. FoxP3 is a master regulator of Treg function, and its expression is under control of several epigenetically labile promoters and enhancers. Demethylation of CpG sites within these regions is associated with increased FoxP3 expression and development of a suppressive phenotype. We examined differences in FoxP3 expression between young (3–4 months) and aged (18–20 months) C57BL/6 mice. DNA from CD4+ T cells is hypomethylated in aged mice, which also exhibit increased Treg numbers and FoxP3 expression. Additionally, Treg from aged mice also have greater ability to suppress effector T‐cell (Teff) proliferation in vitro than Tregs from young mice. Tregs from aged mice exhibit greater redox remodeling–mediated suppression of Teff proliferation during coculture with DCs by decreasing extracellular cysteine availability to a greater extent than Tregs from young mice, creating an adverse environment for Teff proliferation. Tregs from aged mice produce higher IL‐10 levels and suppress CD86 expression on DCs more strongly than Tregs from young mice, suggesting decreased T‐cell activity. Taken together, these results reveal a potential mechanism of higher Treg‐mediated activity that may contribute to increased immune suppression with age.  相似文献   
993.
Type 2 diabetes mellitus (T2DM), by definition is a heterogeneous, multifactorial, polygenic syndrome which results from insulin receptor (IR) dysfunction. It is an outcome of oxidative stress caused by interactions of reactive metabolites (RMs) with lipids, proteins and other molecules of the human body. Production of RMs mainly superoxides (•O2) has been found in a variety of predominating cellular enzyme systems including nicotinamide adenine dinucleotide phosphate oxidase, xanthine oxidase, cyclooxygenase, endothelial nitric oxide synthase (eNOS) and myeloperoxidase. The four main RM related molecular mechanisms are: increased polyol pathway flux; increased advanced glycation end-product formation; activation of protein kinase C isoforms and increased hexosamine pathway flux which have been implicated in glucose-mediated vascular damage. Superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and NOS are antioxidant enzymes involved in scavenging RMs in normal individuals. Functional polymorphisms of these antioxidant enzymes have been reported to be involved in the pathogenesis of T2DM. The low levels of antioxidant enzymes or their non-functionality results in excessive RMs which initiates stress related pathways thereby leading to IR and T2DM. An attempt has been made to review the role of RMs and antioxidant enzymes in oxidative stress resulting in T2DM.  相似文献   
994.
Cancer-testis (CT) genes are expressed in various cancers but not in normal tissues other than in cells of the germline. Although DNA demethylation of promoter-proximal CpGs of CT genes is linked to their expression in cancer, the mechanisms leading to demethylation are unknown. To elucidate such mechanisms we chose to study the Caco-2 colorectal cancer cell line during the course of its spontaneous differentiation in vitro, as we found CT genes, in particular PAGE2, -2B and SPANX-B, to be up-regulated during this process. Differentiation of these cells resulted in a mesenchymal-to-epithelial transition (MET) as evidenced by the gain of epithelial markers CDX2, Claudin-4 and E-cadherin, and a concomitant loss of mesenchymal markers Vimentin, Fibronectin-1 and Transgelin. PAGE2 and SPAN-X up-regulation was accompanied by an increase in Ten-eleven translocation-2 (TET2) expression and cytosine 5-hydroxymethylation as well as the disassociation of heterochromatin protein 1 and the polycomb repressive complex 2 protein EZH2 from promoter-proximal regions of these genes. Reversal of differentiation resulted in down-regulation of PAGE2, -2B and SPANX-B, and induction of epithelial-to-mesenchymal transition (EMT) markers, demonstrating the dynamic nature of CT gene regulation in this model.  相似文献   
995.

Background

The contribution of chronic hepatitis B virus (HBV) infection in the pathogenesis of hepatocellular carcinoma (HCC) through progressive stages of liver fibrosis is exacerbated by the acquisition of naturally occurring mutations in its genome. This study has investigated the prevalence of single and combo mutations in the genome of HBV-genotype D from treatment naïve Indian patients of progressive liver disease stages and assessed their impact on the disease progression to HCC.

Methods

The mutation profile was determined from the sequence analysis of the full-length HBV genome and compared with the reference HBV sequences. SPSS 16.0 and R software were used to delineate their statistical significance in predicting HCC occurrence.

Results

Age was identified as associated risk factor for HCC development in chronic hepatitis B (CHB) patients (p≤0.01). Beyond the classical mutations in basal core promoter (BCP) (A1762T/G1764A) and precore (G1862T), persistence of progressively accumulated mutations in enhancer-I, surface, HBx and core were showed significant association to liver disease progression. BCP_T1753C, core_T147C, surface_L213I had contributed significantly in the disease progression to HCC (p<0.05) in HBeAg positive patients whereas precore_T1858C, core_I116L, core_P130Q and preS1_S98T in HBeAg negative patients. Furthermore, the effect of individual mutation was magnified by the combination with A1762T/G1764A in HCC pathogenesis. Multivariate risk analysis had confirmed that core_P130Q [OR 20.71, 95% CI (1.64–261.77), p = 0.019] in B cell epitope and core_T147C [OR 14.58, 95% CI (1.17–181.76), p = 0.037] in CTL epitope were two independent predictors of HCC in HBeAg positive and negative patients respectively.

Conclusions

Thus distinct pattern of mutations distributed across the entire HBV genome may be useful in predicting HCC in high-risk CHB patients and pattern of mutational combinations may exert greater impact on HCC risk prediction more accurately than point mutations and hence these predictors may support the existing surveillance strategies in proper management of the patients.  相似文献   
996.
Nitrite was recognized as a potent vasodilator >130 years and has more recently emerged as an endogenous signaling molecule and modulator of gene expression. Understanding the molecular mechanisms that regulate nitrite metabolism is essential for its use as a potential diagnostic marker as well as therapeutic agent for cardiovascular diseases. In this study, we have identified human cystathionine ß-synthase (CBS) as a new player in nitrite reduction with implications for the nitrite-dependent control of H2S production. This novel activity of CBS exploits the catalytic property of its unusual heme cofactor to reduce nitrite and generate NO. Evidence for the possible physiological relevance of this reaction is provided by the formation of ferrous-nitrosyl (FeII-NO) CBS in the presence of NADPH, the human diflavin methionine synthase reductase (MSR) and nitrite. Formation of FeII-NO CBS via its nitrite reductase activity inhibits CBS, providing an avenue for regulating biogenesis of H2S and cysteine, the limiting reagent for synthesis of glutathione, a major antioxidant. Our results also suggest a possible role for CBS in intracellular NO biogenesis particularly under hypoxic conditions. The participation of a regulatory heme cofactor in CBS in nitrite reduction is unexpected and expands the repertoire of proteins that can liberate NO from the intracellular nitrite pool. Our results reveal a potential molecular mechanism for cross-talk between nitrite, NO and H2S biology.  相似文献   
997.
Mammalian cells synthesize H2S from sulfur-containing amino acids and are also exposed to exogenous sources of this signaling molecule, notably from gut microbes. As an inhibitor of complex IV in the electron transport chain, H2S can have a profound impact on metabolism, suggesting the hypothesis that metabolic reprogramming is a primary mechanism by which H2S signals. In this study, we report that H2S increases lipogenesis in many cell types, using carbon derived from glutamine rather than from glucose. H2S-stimulated lipid synthesis is sensitive to the mitochondrial NAD(P)H pools and is enabled by reductive carboxylation of α-ketoglutarate. Lipidomics analysis revealed that H2S elicits time-dependent changes across several lipid classes, e.g., upregulating triglycerides while downregulating phosphatidylcholine. Direct analysis of triglyceride concentration revealed that H2S induces a net increase in the size of this lipid pool. These results provide a mechanistic framework for understanding the effects of H2S on increasing lipid droplets in adipocytes and population studies that have pointed to a positive correlation between cysteine (a substrate for H2S synthesis) and fat mass.  相似文献   
998.
999.
Comment on: Rudra S, et al. Cell Cycle 2012; 2114-21The complex process of semi-conservative DNA replication involves a mechanism whereby the leading and lagging strands with opposite polarity serve as templates for concerted synthesis of complementary base pairs.1 Lagging-strand synthesis creates discontinuous Okazaki fragments that require timely processing of the 5′ flaps, so that adjacent nascent DNA strands are ligated together to insure genomic stability. While the genetic and molecular requirements of Okazaki fragment maturation have been studied in much detail, the precise temporal and spatial relationship of lagging-strand processing to sister chromatid cohesion remains unclear.2 The newly replicated daughter duplex DNA molecules (i.e., the sister chromatids) become tethered during DNA replication and remain paired in order to permit proper segregation of the chromosomes to respective poles during mitosis and nuclear division. Elegant genetic studies in yeast have implicated posttranslational modification of cohesins (specialized protein complexes responsible for tethering sister pairs) by Ctf7/Eco1 acetylase as a key regulatory step in the process, enabling cohesins to perform their function in capturing the newly synthesized sister chromatids. Previous work suggested that genetic and physical interactions among the yeast acetyltransferase Ctf7/Eco1, helicase Chl1, Flap Endonuclease (Fen1) and accessory replication factors [e.g., RFC (clamp loader) and PCNA (clamp)] play an integral role in cohesion establishment. Based on these pieces of evidence, several models to explain the relationship between replication fork dynamics and sister chromatid cohesion have been proposed; however, our understanding of the precise timing of cohesin acetylation and the passage of the replication fork machinery has remained murky at best. Given the importance of proper chromosome segregation for chromosomal stability and the suppression of developmental disorders and tumorigenesis, a comprehensive understanding of the molecular acrobatics involved in sister chromatid cohesion is highly important.In a recent study, the temporal relationship between sister chromatid establishment and lagging-strand synthesis was illuminated.3 The authors have elucidated the link between the catalytic functions of DNA unwinding, flap processing and acetylation, which supports a model of cohesion deposition and establishment that occurs after the passage of the replication fork, similar to how genomic DNA becomes chromatinized. This is a significant advance from an earlier and very popular model of sister chromatid cohesion predicted that Ctf7/Eco1 acetylated cohesin proteins before the encounter by the DNA replication fork, which was thought to permit fork progression and the proper cohesion state for sister chromatid tethering (for review, see ref. 2). Instead, the genetic evidence presented by the Skibbens lab supports a model whereby cohesion establishment is temporally coupled to lagging-strand processing.3 In support of the genetic proof, Rudra and Skibbens went on to show that both Ctf7/Eco1 and Chl1 are associated with the lagging-strand processing nuclease Fen1. Altogether, the experimental results implicate a post-fork establishment model that is analogous to how histone protein complexes are deposited onto newly synthesized sister chromatids and become posttranslationally modified to confer epigenetic status.The discovery from the Skibbens lab that cohesion establishment is closely orchestrated with Okazaki fragment processing prompts a new line of inquiry about the control of flap processing by acetylation and its dual purpose for proper sister chromatid cohesion and replication fidelity in eukaryotes (Fig. 1). The catalytic activity of human FEN-14,5 and a functionally related endonuclease known as Dna24 have been shown to be modulated by p300 acetylation, which suggested a model for creating long flap intermediates to promote genomic stability and suppress mutagenesis. Given evidence that ChlR1 is implicated in the genetic disorder Warsaw Breakage syndrome and that the human homolog of yeast Chl16 interacts with the RFC complex and Fen1,7 it will be informative to determine if acetyltransferases such as the human orthologs Esco1 and Esco2, the latter mutated in the cohesinopathy Roberts syndrome,8 and perhaps other acetyltransferases (e.g., p300) are master regulators of lagging-strand synthesis that not only affect replication fidelity and genomic stability, but also sister chromatid cohesion. Coordination of sister chromatid cohesion establishment with lagging strand synthesis may also involve replication fork stabilization by the Timeless-Tipin protein complex implicated in replication checkpoint.9 Defects in the efficient coupling of lagging-strand synthesis to sister chromatid cohesion may contribute to the chromosomal instability characteristic of age-related diseases and cancer.Open in a separate windowFigure 1. Interplay between acetylation, replication fork dynamics and cohesion establishment important for chromosomal integrity.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号