首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   989篇
  免费   70篇
  1059篇
  2023年   4篇
  2022年   20篇
  2021年   26篇
  2020年   12篇
  2019年   14篇
  2018年   25篇
  2017年   29篇
  2016年   28篇
  2015年   58篇
  2014年   53篇
  2013年   76篇
  2012年   73篇
  2011年   77篇
  2010年   43篇
  2009年   31篇
  2008年   43篇
  2007年   52篇
  2006年   47篇
  2005年   42篇
  2004年   49篇
  2003年   30篇
  2002年   20篇
  2001年   21篇
  2000年   22篇
  1999年   16篇
  1998年   13篇
  1996年   8篇
  1994年   4篇
  1993年   3篇
  1992年   10篇
  1991年   8篇
  1990年   11篇
  1989年   9篇
  1988年   7篇
  1987年   3篇
  1986年   8篇
  1985年   6篇
  1984年   4篇
  1983年   5篇
  1982年   6篇
  1981年   3篇
  1980年   5篇
  1978年   5篇
  1976年   2篇
  1975年   3篇
  1974年   6篇
  1972年   2篇
  1971年   3篇
  1969年   2篇
  1963年   2篇
排序方式: 共有1059条查询结果,搜索用时 15 毫秒
71.
It is unknown if, and how, students redefine their sense of school belongingness after negotiating the transition to secondary school. The current study used longitudinal data from 266 students with, and without, disabilities who negotiated the transition from 52 primary schools to 152 secondary schools. The study presents the 13 most significant personal student and contextual factors associated with belongingness in the first year of secondary school. Student perception of school belongingness was found to be stable across the transition. No variability in school belongingness due to gender, disability or household-socio-economic status (SES) was noted. Primary school belongingness accounted for 22% of the variability in secondary school belongingness. Several personal student factors (competence, coping skills) and school factors (low-level classroom task-goal orientation), which influenced belongingness in primary school, continued to influence belongingness in secondary school. In secondary school, effort-goal orientation of the student and perception of their school’s tolerance to disability were each associated with perception of school belongingness. Family factors did not influence belongingness in secondary school. Findings of the current study highlight the need for primary schools to foster belongingness among their students at an early age, and transfer students’ belongingness profiles as part of the hand-over documentation. Most of the factors that influenced school belongingness before and after the transition to secondary are amenable to change.  相似文献   
72.
We present a 3D model of the four transmembrane (TM) helical regions of bilitranslocase (BTL), a structurally uncharacterized protein that transports organic anions across the cell membrane. The model was computed by considering helix-helix interactions as primary constraints, using Monte Carlo simulations. The interactions between the TM2 and TM3 segments have been confirmed by Förster resonance energy transfer (FRET) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy, increasing our confidence in the model. Several insights into the BTL transport mechanism were obtained by analyzing the model. For example, the observed cis-trans Leu-Pro peptide bond isomerization in the TM3 fragment may indicate a key conformational change during anion transport by BTL. Our structural model of BTL may facilitate further studies, including drug discovery.  相似文献   
73.
Primary open angle glaucoma (POAG) belonging to a group of optic neuropathies, result from interaction between genetic and environmental factors. Study of associations with quantitative traits (QTs) is one of the successful strategies to understand the complex genetics of POAG. The current study attempts to explore the association of variations near/in genes like ATOH7, SIX1/SIX6 complex, CDKN2B, CARD10, and CDC7 with POAG and its QTs including vertical cup to disc ratio (VCDR), central corneal thickness (CCT), intra ocular pressure (IOP), and axial length (AL). Case-control study design was carried out in a sample size of 97 POAG cases and 371 controls from South India. Model-based (additive, recessive, dominant) association of the genotypes and their interaction was carried out between cases and controls using chi-square, linear and logistic regression methods. Nominal significance (P<0.05) was observed for QTs like i) VCDR with SNPs rs1900004 (ATOH7); rs1192415 (CDC7); rs10483727 (SIX1/SIX6), rs9607469 (CARD10); ii) CCT with rs1192415; iii) IOP with rs1900004 and iv) AL with rs1900004 and rs1063192 (CDKN2B). We were able to replicate previously known interactions between ATOH7-SIX6 and SIX6-CDKN2B along with few novel interactions between ATOH7CDC7 and SIX6 with genes including CARD10 and CDC7. In summary, our results suggest that a probable interaction among the candidate genes for QTs, play a major role in determining the individual’s susceptibility to POAG.  相似文献   
74.
75.
High glucose-induced protein synthesis in the glomerular epithelial cell (GEC) is partly dependent on reduction in phosphorylation of AMP-activated protein kinase (AMPK). We evaluated the effect of resveratrol, a phytophenol known to stimulate AMPK, on protein synthesis. Resveratrol completely inhibited high glucose stimulation of protein synthesis and synthesis of fibronectin, an important matrix protein, at 3 days. Resveratrol dose-dependently increased AMPK phosphorylation and abolished high glucose-induced reduction in its phosphorylation. We examined the effect of resveratrol on critical steps in mRNA translation, a critical event in protein synthesis. Resveratrol inhibited high glucose-induced changes in association of eIF4E with eIF4G, phosphorylation of eIF4E, eEF2, eEF2 kinase and, p70S6 kinase, indicating that it affects important events in both initiation and elongation phases of mRNA translation. Upstream regulators of AMPK in high glucose-treated GEC were explored. High glucose augmented acetylation of LKB1, the upstream kinase for AMPK, and inhibited its activity. Resveratrol prevented acetylation of LKB1 and restored its activity in high glucose-treated cells; this action did not appear to depend on SIRT1, a class III histone deacetylase. Our data show that resveratrol ameliorates protein synthesis by regulating the LKB1–AMPK axis.  相似文献   
76.
The rapid activation and feedback regulation of many G protein signaling cascades raises the possibility that the critical signaling proteins may be tightly coupled. Previous studies show that the PDZ domain containing protein INAD, which functions in Drosophila vision, coordinates a signaling complex by binding directly to the light-sensitive ion channel, TRP, and to phospholipase C (PLC). The INAD signaling complex also includes rhodopsin, protein kinase C (PKC), and calmodulin, though it is not known whether these proteins bind to INAD. In the current work, we show that rhodopsin, calmodulin, and PKC associate with the signaling complex by direct binding to INAD. We also found that a second ion channel, TRPL, bound to INAD. Thus, most of the proteins involved directly in phototransduction appear to bind to INAD. Furthermore, we found that INAD formed homopolymers and the homomultimerization occurred through two PDZ domains. Thus, we propose that the INAD supramolecular complex is a higher order signaling web consisting of an extended network of INAD molecules through which a G protein–coupled cascade is tethered.  相似文献   
77.
Growth is crucially controlled by the functional ribosomes available in cells. To meet the enhanced energy demand, cancer cells re-wire and increase their ribosome biogenesis. The RNA-binding protein PNO1, a ribosome assembly factor, plays an essential role in ribosome biogenesis. The purpose of this study was to examine whether PNO1 can be used as a biomarker for lung adenocarcinoma and also examine the molecular mechanisms by which PNO1 knockdown by CRISPR/Cas9 inhibited growth and epithelial–mesenchymal transition (EMT). The expression of PNO1 was significantly higher in lung adenocarcinoma compared to normal lung tissues. PNO1 expression in lung adenocarcinoma patients increased with stage, nodal metastasis, and smoking. Lung adenocarcinoma tissues from males expressed higher PNO1 than those from females. Furthermore, lung adenocarcinoma tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53, suggesting the influence of Tp53 status on PNO1 expression. PNO1 knockdown inhibited cell viability, colony formation, and EMT, and induced apoptosis. Since dysregulated signalling through the Notch receptors promotes lung adenocarcinoma, we measured the effects of PNO1 inhibition on the Notch pathway. PNO1 knockdown inhibited Notch signalling by suppressing the expression of Notch receptors, their ligands, and downstream targets. PNO1 knockdown also suppressed CCND1, p21, PTGS-2, IL-1α, IL-8, and CXCL-8 genes. Overall, our data suggest that PNO1 can be used as a diagnostic biomarker, and also can be an attractive therapeutic target for the treatment of lung adenocarcinoma.  相似文献   
78.
79.
Bacillus anthracis Ser/Thr protein kinase PrkC (BasPrkC) is important for virulence of the bacterium within the host. Homologs of PrkC and its cognate phosphatase PrpC (BasPrpC) are the most conserved mediators of signaling events in diverse bacteria. BasPrkC homolog in Bacillus subtilis regulates critical processes like spore germination and BasPrpC modulates the activity of BasPrkC by dephosphorylation. So far, biochemical and genetic studies have provided important insights into the roles of BasPrkC and BasPrpC; however, regulation of their activities is not known. We studied the regulation of BasPrkC/BasPrpC pair and observed that Zn2+ metal ions can alter their activities. Zn2+ promotes BasPrkC kinase activity while inhibits the BasPrpC phosphatase activity. Concentration of Zn2+ in growing B. anthracis cells was found to vary with growth phase. Zn2+ was found to be lowest in log phase cells while it was highest in spores. This variation in Zn2+ concentration is significant for understanding the antagonistic activities of BasPrkC/BasPrpC pair. Our results also show that BasPrkC activity is modulated by temperature changes and kinase inhibitors. Additionally, we identified Elongation Factor Tu (BasEf-Tu) as a substrate of BasPrkC/BasPrpC pair and assessed the impact of their regulation on BasEf-Tu phosphorylation. Based on these results, we propose Zn2+ as an important regulator of BasPrkC/BasPrpC mediated phosphorylation cascades. Thus, this study reveals additional means by which BasPrkC can be activated leading to autophosphorylation and substrate phosphorylation.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号