首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8637篇
  免费   487篇
  国内免费   6篇
  9130篇
  2023年   75篇
  2022年   121篇
  2021年   253篇
  2020年   150篇
  2019年   168篇
  2018年   234篇
  2017年   214篇
  2016年   272篇
  2015年   352篇
  2014年   404篇
  2013年   563篇
  2012年   576篇
  2011年   549篇
  2010年   335篇
  2009年   275篇
  2008年   387篇
  2007年   347篇
  2006年   335篇
  2005年   334篇
  2004年   270篇
  2003年   222篇
  2002年   230篇
  2001年   201篇
  2000年   180篇
  1999年   164篇
  1998年   60篇
  1997年   56篇
  1996年   65篇
  1995年   53篇
  1994年   60篇
  1993年   37篇
  1992年   117篇
  1991年   117篇
  1990年   88篇
  1989年   95篇
  1988年   88篇
  1987年   90篇
  1986年   87篇
  1985年   92篇
  1984年   82篇
  1983年   51篇
  1982年   48篇
  1981年   42篇
  1980年   49篇
  1979年   78篇
  1978年   58篇
  1977年   51篇
  1976年   42篇
  1974年   39篇
  1973年   44篇
排序方式: 共有9130条查询结果,搜索用时 0 毫秒
991.
The present study reports the effect of indanone derivatives on scopolamine induced deficit cholinergic neurotransmission serving as promising leads for the therapeutics of cognitive dysfunction. Eleven compounds 5464 have been designed, synthesised and evaluated against behavioural alterations using step down passive avoidance protocol at a dose of 0.5?mg/kg with Donepezil (1) as the reference standard. All the synthesised compounds were evaluated for their in vitro acetylcholinesterase (AChE) inhibition at five different concentrations using mice brain homogenate as the source of the enzyme. Compounds 54, 56, 59 and 64 displayed appreciable activity with an IC50 value of 14.06?µM, 12.30?µM, 14.06?µM and 12.01?µM, respectively towards acetylcholinesterase inhibition. The molecular docking study performed to predict the binding mode of the compounds suggested that these compounds could bind appreciably to the amino acids present at the active site of recombinant human acetylcholinesterase (rhAChE). The behavioural, biochemical and in silico pharmacokinetic studies were in concordance with each other.  相似文献   
992.
Plants use various mechanisms to cope with drought constraints at morphological, physiological, and biochemical level by means of different adaptive mechanisms. All organisms use a network of signal transduction pathways to control their metabolism and to adapt to the environment. Among these pathways, calcium (Ca2+) ions play an important role as a universal second messenger. Calcium has unique properties and universal ability to transmit diverse signals that trigger primary physiological actions in the cell in response to hormones, pathogens, and stress factors. Calcium plays a fundamental role in regulating the polar growth of cells and tissues and participates in plant adaptation to various stress factors. This study was conducted to examine the role of Ca2+ in ameliorating the adverse effect of drought stress responses in two contrasting wheat genotypes, HD 2733 (drought sensitive) and HD 2987 (drought tolerant), differing in their drought tolerance. The plants were treated with mannitol or Hoagland solution and then supplemented with CaCl2 (10 mM). Measurements of seed germination, shoot growth, and chlorophyll content showed that calcium treatment increased all these factors in tolerant genotype (HD 2987) under induced stress condition. Drought stress reduced relative water content, osmolyte, and soluble sugar accumulation in both the genotypes, but CaCl2 supplementation increased all the components under stress condition in HD 2987 as compared to HD 2733. The oxidative damage caused by induced stress was lower in HD 2987 compared to HD 2733 genotypes as assessed by their higher photosynthetic capacity and lower electrolyte leakage, malondialdehyde (MDA) content as well as H2O2 accumulation. Less accumulation of superoxide and H2O2 was also observed in HD 2987 genotype after CaCl2 supplementation combined with mannitol treatment. In addition, the enhanced accumulation of calcium in the HD 2987 genotype is correlated with the higher activities of antioxidant enzymes than HD 2733 genotype under similar stress conditions. Our findings provide evidence of the protective role of exogenous calcium in conferring better tolerance against mannitol-induced drought stress in wheat genotypes, which could be useful as genetic stock to develop wheat tolerant varieties in breeding programs.  相似文献   
993.
The world’s increasing population and shortage of food and feed is creating an urgently for us to look for new protein sources from waste products like keratinous waste. Poor management of these wastes has made them one of the major recalcitrant pollutants in nature. Microbial keratinases offers an economic and eco-friendly alternative for degrading and recycling keratinous waste into valuable byproducts. Diverse groups of microorganisms viz., bacteria, fungi and actinomycetes have the ability to degrade recalcitrant keratin by producing keratinase enzyme. Microbial keratinases exhibits great diversity in its biochemical properties with respect to activity and stability in various pH and temperature ranges as well as in the range of recalcitrant proteins it degrades like those present in feathers, hairs, nails, hooves etc. Owing to diverse properties and multifarious biotechnological implications, keratinases can be considered as promising biocatalysts for preparation of animal nutrients, protein supplements, leather processing, fiber modification, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical, cosmetic and biomedical industries, and waste management. This review article presents an overview of keratin structure and composition, mechanism of microbial keratinolysis, diversity of keratinolytic microorganisms, and their potential applications in various fields.  相似文献   
994.
Plasmonics - In this paper, focus is on the light trapping surface in crystalline silicon (c-Si) solar cells where thinner c-Si wafers are expected to be used by industry to reduce the cost of cell...  相似文献   
995.
The transdermal patch formulation has many advantages, including noninvasiveness, an ability to bypass the first-pass metabolism, low dosage requirements, and prolonged drug delivery. However, the instability of solid-state drugs is one of the most critical problems observed in transdermal patch products. Therefore, a well-characterized approach for counteracting stability problems in solid-state drugs is crucial for improving the performance of transdermal patch products. This review provides insight into the solid-state stability of drugs associated with transdermal patch products and offers a comprehensive update on the various approaches being used for improving the stability of the active pharmaceutical ingredients currently being used.  相似文献   
996.
Derivatization of fullerenes to polyhydroxylated fullerenes, i.e., fullerenols (FLU), dramatically decreases their toxicity and has been reported to enhance the solubility as well as cellular permeability. In this paper, we report synthesis of FLU as nanocarrier and subsequent chemical conjugation of Methotrexate (MTX) to FLU with a serum-stable and intracellularly hydrolysable ester bond between FLU and MTX. The conjugate was characterized for physiochemical attributes, micromeritics, drug-loading, and drug-release and evaluated for cancer cell-toxicity, cellular-uptake, hemocompatibility, protein binding, and pharmacokinetics. The developed hemocompatible FL-MTX offered lower protein binding vis-à-vis naïve drug and substantially higher drug loading. The conjugate offered pH-dependent release of 38.20?±?1.19% at systemic pH and 85.67?±?3.39% at the cancer cell pH. FLU-MTX-treated cells showed significant reduction in IC50 value vis-à-vis the cells treated with pure MTX. Analogously, the results from confocal scanning laser microscopy also confirmed the easy access of the dye-tagged FLU-MTX conjugate to the cell interiors. In pharmacokinetics, the AUC of MTX was enhanced by approx. 6.15 times and plasma half-life was enhanced by 2.45 times, after parenteral administration of single equivalent dose in rodents. FLU-MTX offered enhanced availability of drug to the biological system, meanwhile improved the cancer-cell cytotoxicity, sustained the effective plasma drug concentrations, and offered substantial compatibility to erythrocytes.  相似文献   
997.
Heparinases are widely used for production of clinically and therapeutically important bioactive oligosaccharides and in analyzing the polydisperse, heterogeneous, and complex structures of heparin/heparan sulfate. In the present study, the gene (1911 bp) encoding heparinase II/III of family 12 polysaccharide lyase (PsPL12a) from Pseudopedobacter saltans was cloned, expressed, and biochemically and functionally characterized. The purified enzyme PsPL12a of molecular size approximately 76 kDa exhibited maximum activity in the temperature range 45–50 °C and at pH 6.0. PsPL12a gave maximum activity at 1% (w/v) heparin under optimum conditions. The kinetic parameters, K m and Vmax, for PsPL12a were 4.6?±?0.5 mg/ml and 70?±?2 U/mg, respectively. Ten millimolars of each Mg2+ and Mn2+ ions enhanced PsPL12a activity by 80%, whereas Ni2+ inhibited by 75% and Co2+ by 10%, and EDTA completely inactivated the enzyme. Protein melting curve of PsPL12a gave a single peak at 55 °C and 10 mM Mg2+ ions and shifted the peak to 60 °C. The secondary structure analysis of PsPL12a by CD showed 65.12% α-helix, 11.84% β-strand, and 23.04% random coil. The degradation products of heparin by PsPL12a analyzed by ESI-MS spectra displayed peaks corresponding to heparin di-, tetra-, penta-, and hexa-saccharides revealing the endolytic mode of enzyme action. Heparinase II/III (PsPL12a) from P. saltans can be used for production of low molecular weight heparin oligosaccharides for their utilization as anticoagulants. This is the first report on heparinase cloned from P. saltans.  相似文献   
998.
999.
1000.
Coumarin containing pyrazoline derivatives have been synthesized and tested as inhibitors of in vitro development of a chloroquine-sensitive (MRC-02) and chloroquine-resistant (RKL-2) strain of Plasmodium falciparum and in vivo Plasmodium berghei malaria. Docking study was also done on cysteine protease falcipain-2 which showed that the binding pose of C-14 molecule and epoxysuccinate, inhibitor of falcipain-2, binds in the similar pattern. The most active antimalarial compound was 3-(1-benzoyl-5-(4-flurophenyl)-4,5-dihydro-1H-pyrazol-3yl)-7-(diethyamino)-2H-chromen-2-one C-14, with an IC50 of 4.21?µg/ml provided complete protection to the infected mice at 24?mg/kg X 4?days respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号