首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8637篇
  免费   487篇
  国内免费   6篇
  9130篇
  2023年   75篇
  2022年   121篇
  2021年   253篇
  2020年   150篇
  2019年   168篇
  2018年   234篇
  2017年   214篇
  2016年   272篇
  2015年   352篇
  2014年   404篇
  2013年   563篇
  2012年   576篇
  2011年   549篇
  2010年   335篇
  2009年   275篇
  2008年   387篇
  2007年   347篇
  2006年   335篇
  2005年   334篇
  2004年   270篇
  2003年   222篇
  2002年   230篇
  2001年   201篇
  2000年   180篇
  1999年   164篇
  1998年   60篇
  1997年   56篇
  1996年   65篇
  1995年   53篇
  1994年   60篇
  1993年   37篇
  1992年   117篇
  1991年   117篇
  1990年   88篇
  1989年   95篇
  1988年   88篇
  1987年   90篇
  1986年   87篇
  1985年   92篇
  1984年   82篇
  1983年   51篇
  1982年   48篇
  1981年   42篇
  1980年   49篇
  1979年   78篇
  1978年   58篇
  1977年   51篇
  1976年   42篇
  1974年   39篇
  1973年   44篇
排序方式: 共有9130条查询结果,搜索用时 15 毫秒
141.
TGF-beta in diabetic kidney disease: role of novel signaling pathways   总被引:7,自引:0,他引:7  
Diabetic nephropathy is the leading cause of end-stage renal disease in the United States and is a major contributing cause of morbidity and mortality in patients with diabetes. Despite conventional therapy to improve glycemic and blood pressure control the incidence of diabetic nephropathy is reaching epidemic proportions worldwide. As the major pathologic feature of diabetic nephropathy is diffuse mesangial matrix expansion, the pro-sclerotic cytokine transforming growth factor-beta, TGF-beta, is a leading candidate to mediate the progression of the disease. Numerous studies have now demonstrated that TGF-beta is a key factor in experimental models of diabetic kidney disease as well as in patients with diabetic nephropathy. Recent studies have begun to explore the mechanisms by which TGF-beta is stimulated by high glucose and how TGF-beta exerts its matrix-stimulating effects on renal cells. TGF-beta may also be involved in mediating the vascular dysfunction of diabetic kidney disease via its effects on the key intracellular calcium channel, the inositol trisphosphate receptor (IP(3)R). As there is substantial evidence for a cause and effect relationship between upregulation of TGF-beta and the progression of diabetic kidney disease, future studies will seek to establish specific targets along these pathways at which to intervene.  相似文献   
142.
Werner and Bloom syndromes are genetic RecQ helicase disorders characterized by genomic instability. Biochemical and genetic data indicate that an important protein interaction of WRN and Bloom syndrome (BLM) helicases is with the structure-specific nuclease Flap Endonuclease 1 (FEN-1), an enzyme that is implicated in the processing of DNA intermediates that arise during cellular DNA replication, repair and recombination. To acquire a better understanding of the interaction of WRN and BLM with FEN-1, we have mapped the FEN-1 binding site on the two RecQ helicases. Both WRN and BLM bind to the extreme C-terminal 18 amino acid tail of FEN-1 that is adjacent to the PCNA binding site of FEN-1. The importance of the WRN/BLM physical interaction with the FEN-1 C-terminal tail was confirmed by functional interaction studies with catalytically active purified recombinant FEN-1 deletion mutant proteins that lack either the WRN/BLM binding site or the PCNA interaction site. The distinct binding sites of WRN and PCNA and their combined effect on FEN-1 nuclease activity suggest that they may coordinately act with FEN-1. WRN was shown to facilitate FEN-1 binding to its preferred double-flap substrate through its protein interaction with the FEN-1 C-terminal binding site. WRN retained its ability to physically bind and stimulate acetylated FEN-1 cleavage activity to the same extent as unacetylated FEN-1. These studies provide new insights to the interaction of WRN and BLM helicases with FEN-1, and how these interactions might be regulated with the PCNA–FEN-1 interaction during DNA replication and repair.  相似文献   
143.
144.
145.
A two-fold difference in sensitivity to cis-diamminedichloroplatinum(II) (cisplatin), as judged by colony forming assays, has been demonstrated in two human bladder carcinoma continuous cell lines. Approximately twice as many DNA-DNA interstrand cross-links (ISL) and a 2-fold greater inhibition of DNA synthesis occurred in the more sensitive T24 cell line than in the RT112 cell line after exposure to the same concentrations of cisplatin. Equitoxic concentrations of cisplatin resulted in similar extents of ISL and inhibition of DNA synthesis in both cell lines. Although drug uptake was identical, twice as much cisplatin was bound to the DNA of T24 cells than RT112 cells. However after equitoxic concentrations of cisplatin the DNA from both cell lines was platinated to a similar extent. In addition, levels of glutathione (GSH), glutathione reductase (GR) and total glutathione-S-transferases (GST) were higher in the less sensitive RT112 cell line.  相似文献   
146.
Reaction of benzyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-mesyl-alpha-D-galactopyran oside with cesium floride gave benzyl 2-acetamido-3,6-anhydro-4-O-benzyl-2-deoxy-alpha-D-galactopyranoside instead of the desired 6-fluoro derivative. Acetonation of benzyl 2-acetamido-2-deoxy-6-O-mesyl-alpha-D-galactopyranoside gave the corresponding 3,4-O-isopropylidene derivative. The 6-O-mesyl group was displaced by fluorine with cesium fluoride in boiling 1,2-ethanediol, and hydrolysis and subsequent N-acetylation gave the target compound. In another procedure, treatment of 2-acetamido-1,3,4-tri-O-acetyl-2-deoxy-alpha-D-galactose with N-(diethylamino)sulfur trifluoride gave 2-acetamido-1,3,4-tri-O-acetyl-2,6-dideoxy-6-fluoro-D-galactose which, on acid hydrolysis followed by N-acetylation, gave 2-acetamido-2,6-dideoxy-6-fluoro-D-galactose.  相似文献   
147.
The effects of colchicine and its analogs on the carrageenin-induced footpad edema in rats were investigated. The anti-inflammatory effects of colchicine analogs were measured at 3 and 5 hr after the carrageenin injection. Colchicine, 1-demethylcolchicine and 3-demethylcolchicine markedly inhibited the carrageenin edema whereas 2-demethylcolchicine was much less active. Thiocolchicinoids, having a thiomethyl group at C-10 instead of a methoxy group, were considerably less potent. These results suggest that the presence of methoxy groups at C-2 and C-10 in colchicine is necessary to maintain anti-inflammatory activity. Inactivity of deacetylcolchicine indicates that substitution of the amino group at C-7 with electron withdrawing groups is also important. Significant inhibition of carrageenin edema and strong binding to tubulin in vitro were manifested by colchicine, 3-demethylcolchicine, N-butyryldeacetylcolchicine and colchifoline. On the other hand, N-carbethoxydeacetylcolchicine which did bind well to tubulin, did not show much effect on the carrageenin edema. These results suggest that the anti-inflammatory action of colchicinoids may not be regulated through the microtubule system.  相似文献   
148.
To further characterize a human B-cell growth factor (BCGF) produced by phytohemagglutinin (PHA) P-stimulated peripheral blood T cells, a partially purified preparation of this material was tested in a number of murine assays for B-cell stimulatory factors (BSF). Human BCGF lacked murine BSF-1 activity as assessed via the induction of polyclonal proliferation of anti-IgM-stimulated murine B cells; however, this material consistently augmented the proliferative response of murine B cells to anti-IgM and a saturating dose of murine BSF-1. Human BCGF also induced proliferation in unstimulated murine B cells, and augmented the proliferative response of dextran sulfate activated murine B cells. Human BCGF is therefore capable of causing proliferation of unstimulated and activated murine B cells, and by these criteria closely resembles murine BCGF II. In contrast to murine BCGF II, however, human BCGF failed to stimulate proliferation or immunoglobulin (Ig) secretion by murine BCL1 B lymphoma cells. A murine analog of this human BCGF showing the same pattern of biological responses was found in concanavalin A-stimulated supernatants of the murine MB2.1 T-cell line and D9-Cl T-cell hybridoma. The active component of the human BCGF preparation was not due to contaminating PHA, interleukin 1, interleukin 2; interferon-gamma, or endotoxin. Comparison between the above human BCGF and a commonly used source of murine BCGF II, i.e., supernatant from antigen-stimulated D10.G4.1 T cells, provided information suggestive of BCGF II heterogeneity. Both human BCGF and D10.G4.1 supernatant caused proliferation of unstimulated and dextran sulfate-stimulated murine B cells; however, only the human BCGF preparation augmented the proliferative response of murine B cells to anti-IgM and a saturating dose of murine BSF-1, and only the D10.G4.1 supernatant stimulated BCL1 cell proliferation and immunoglobulin secretion. The data therefore indicate that the different assays for BCGF II used in this study respond to different factors, and suggest the existence of two BCGF II-like activities.  相似文献   
149.
Centromeres are difficult to map even in species where genetic resolution is excellent. Here we show that junctions between repeats provide reliable single-copy markers for recombinant inbred mapping within centromeres and pericentromeric heterochromatin. Repeat junction mapping was combined with anti-CENH3-mediated ChIP to provide a definitive map position for maize centromere 8.  相似文献   
150.
Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S. cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved compared with nonacetylated lysines. A large fraction of the conserved acetylation sites are present on proteins involved in cellular metabolism, protein synthesis, and protein folding. Furthermore, quantification of the Rpd3-regulated acetylation sites identified several previously known, as well as new putative substrates of this deacetylase. Rpd3 deficiency increased acetylation of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex subunit Sgf73 on K33. This acetylation site is located within a critical regulatory domain in Sgf73 that interacts with Ubp8 and is involved in the activation of the Ubp8-containing histone H2B deubiquitylase complex. Our data provides the first global survey of acetylation in budding yeast, and suggests a wide-ranging regulatory scope of this modification. The provided dataset may serve as an important resource for the functional analysis of lysine acetylation in eukaryotes.Lysine acetylation is a dynamic and reversible post-translational modification. Acetylation of lysines on their ε-amino group is catalyzed by lysine acetyltransferases (KATs1, also known as histone acetyltrasferases (HATs)), and reversed by lysine deacetylases (KDACs, also known as histone deacetylases (HDACs)) (1). The enzymatic machinery involved in lysine acetylation is evolutionary conserved in all forms of life (24). The role of acetylation has been extensively studied in the regulation of gene expression via modification of histones (5). Acetylation also plays important roles in controlling cellular metabolism (610), protein folding (11), and sister chromatid cohesion (12). Furthermore, acetylation has been implicated in regulating the beneficial effects of calorie restriction (13), a low nutrient diet without starvation, and aging. Based on these findings, it is proposed that the functional roles of acetylation in these processes are evolutionary conserved from yeast to mammals.Advancements in mass spectrometry (MS)-based proteomics have greatly facilitated identification of thousands of post-translational modification (PTM) sites in eukaryotic cells (1418). Proteome-wide mapping of PTM sites can provide important leads for analyzing the functional relevance of individual sites and a systems-wide view of the regulatory scope of post-translational modifications. Also, large-scale PTM datasets are an important resource for the in silico analysis of PTMs, which can broaden the understanding of modification site properties and their evolutionary trajectories.The budding yeast Saccharomyces cerevisiae is a commonly used unicellular eukaryotic model organism. Yeast has been used in many pioneering “-omics” studies, including sequencing of the first eukaryotic genome (19), systems-wide genetic interactions analysis (20, 21), MS-based comprehensive mapping of a eukaryotic proteome (22), and proteome-wide analysis of protein-protein interactions (23, 24). In addition, S. cerevisiae has been extensively used to study the molecular mechanisms of acetylation. Many lysine acetyltransferases and deacetylases were discovered in this organism (2, 25), and their orthologs were subsequently identified in higher eukaryotes. Furthermore, the functional roles of many well-studied acetylation sites on histones are conserved from yeast to mammals. Recent data from human and Drosophila cells show that acetylation is present on many highly conserved metabolic enzymes (2628). However, only a few dozen yeast acetylation sites are annotated in the Uniprot database. Given the presence of a well-conserved and elaborate acetylation machinery in yeast, we reasoned that many more acetylation sites exist in this organism that remained to be identified.Here we used high resolution mass spectrometry-based proteomics to investigate the scope of acetylation in S. cerevisiae. We identified about 4000 unique acetylation sites in this important model organism. Bioinformatic analysis of yeast acetylation sites and comparison with previously identified human and Drosophila acetylation sites indicates that many acetylation sites are evolutionary conserved. Furthermore, quantitative analysis of the Rpd3-regulated acetylation sites identified several nuclear proteins that showed increased acetylation in rpd3 knockout cells. Our results provide a systems-wide view of acetylation in budding yeast, and a rich dataset for functional analysis of acetylation sites in this organism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号