首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
  国内免费   1篇
  54篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2017年   3篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   4篇
  2010年   7篇
  2009年   7篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1996年   1篇
  1992年   1篇
  1981年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
21.
A sulfonamidebenzamide series was assessed for anti-kinetoplastid parasite activity based on structural similarity to the antiparasitic drug, nifurtimox. Through structure-activity optimization, derivatives with limited mammalian cell toxicity and increased potency toward African trypanosomes and Leishmania promastigotes were developed. Compound 22 had the best potency against the trypanosome (EC50 = 0.010 μM) while several compounds showed ~10-fold less potency against Leishmania promastigotes without impacting mammalian cells (EC50 > 25 μM). While the chemotype originated from an unrelated optimization program aimed at selectively activating an apoptotic pathway in mammalian cancer cells, our preliminary results suggest that a distinct mechanism of action from that observed in mammalian cells is responsible for the promising activity observed in parasites.  相似文献   
22.
Diverse microbial consortia profoundly influence animal biology, necessitating an understanding of microbiome variation in studies of animal adaptation. Yet, little is known about such variability among fish, in spite of their importance in aquatic ecosystems. The Trinidadian guppy, Poecilia reticulata, is an intriguing candidate to test microbiome-related hypotheses on the drivers and consequences of animal adaptation, given the recent parallel origins of a similar ecotype across streams. To assess the relationships between the microbiome and host adaptation, we used 16S rRNA amplicon sequencing to characterize gut bacteria of two guppy ecotypes with known divergence in diet, life history, physiology and morphology collected from low-predation (LP) and high-predation (HP) habitats in four Trinidadian streams. Guts were populated by several recurring, core bacteria that are related to other fish associates and rarely detected in the environment. Although gut communities of lab-reared guppies differed from those in the wild, microbiome divergence between ecotypes from the same stream was evident under identical rearing conditions, suggesting host genetic divergence can affect associations with gut bacteria. In the field, gut communities varied over time, across streams and between ecotypes in a stream-specific manner. This latter finding, along with PICRUSt predictions of metagenome function, argues against strong parallelism of the gut microbiome in association with LP ecotype evolution. Thus, bacteria cannot be invoked in facilitating the heightened reliance of LP guppies on lower-quality diets. We argue that the macroevolutionary microbiome convergence seen across animals with similar diets may be a signature of secondary microbial shifts arising some time after host-driven adaptation.  相似文献   
23.
Mitochondrial alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, catalyzes the energy wasteful cyanide (CN)‐resistant respiration and plays a role in optimizing photosynthesis. Although it has been demonstrated that leaf AOX is upregulated after illumination, the in vivo mechanism of AOX upregulation by light and its physiological significance are still unknown. In this report, red light and blue light‐induced AOX (especially AOX1a) expressions were characterized. Phytochromes, phototropins and cryptochromes, all these photoreceptors mediate the light‐response of AOX1a gene. When aox1a mutant seedlings were grown under a high‐light (HL) condition, photobleaching was more evident in the mutant than the wild‐type plants. More reactive oxygen species (ROS) accumulation and inefficient dissipation of chloroplast reducing‐equivalents in aox1a mutant may account for its worse adaptation to HL stress. When etiolated seedlings were exposed to illumination for 4 h, chlorophyll accumulation was largely delayed in aox1a plants. We first suggest that more reduction of the photosynthetic electron transport chain and more accumulation of reducing‐equivalents in the mutant during de‐etiolation might be the main reasons.  相似文献   
24.
25.
26.
High-throughput screening (HTS) has achieved a dominant role in drug discovery over the past 2 decades. The goal of HTS is to identify active compounds (hits) by screening large numbers of diverse chemical compounds against selected targets and/or cellular phenotypes. The HTS process consists of multiple automated steps involving compound handling, liquid transfers, and assay signal capture, all of which unavoidably contribute to systematic variation in the screening data. The challenge is to distinguish biologically active compounds from assay variability. Traditional plate controls-based and non-controls-based statistical methods have been widely used for HTS data processing and active identification by both the pharmaceutical industry and academic sectors. More recently, improved robust statistical methods have been introduced, reducing the impact of systematic row/column effects in HTS data. To apply such robust methods effectively and properly, we need to understand their necessity and functionality. Data from 6 HTS case histories are presented to illustrate that robust statistical methods may sometimes be misleading and can result in more, rather than less, false positives or false negatives. In practice, no single method is the best hit detection method for every HTS data set. However, to aid the selection of the most appropriate HTS data-processing and active identification methods, the authors developed a 3-step statistical decision methodology. Step 1 is to determine the most appropriate HTS data-processing method and establish criteria for quality control review and active identification from 3-day assay signal window and DMSO validation tests. Step 2 is to perform a multilevel statistical and graphical review of the screening data to exclude data that fall outside the quality control criteria. Step 3 is to apply the established active criterion to the quality-assured data to identify the active compounds.  相似文献   
27.
Currently, there is a serious absence of pharmaceutically attractive small molecules that mitigate the lethal effects of an accidental or intentional public exposure to toxic doses of ionizing radiation. Moreover, cellular systems that emulate the radiobiologically relevant cell populations and that are suitable for high-throughput screening have not been established. Therefore, we examined two human pluripotent embryonal carcinoma cell lines for use in an unbiased phenotypic small interfering RNA (siRNA) assay to identify proteins with the potential of being drug targets for the protection of human cell populations against clinically relevant ionizing radiation doses that cause acute radiation syndrome. Of the two human cell lines tested, NCCIT cells had optimal growth characteristics in a 384 well format, exhibited radiation sensitivity (D(0) = 1.3 ± 0.1 Gy and ? = 2.0 ± 0.6) comparable to the radiosensitivity of stem cell populations associated with human death within 30 days after total-body irradiation. Moreover, they internalized siRNA after 4 Gy irradiation enabling siRNA library screening. Therefore, we used the human NCCIT cell line for the radiation mitigation study with a siRNA library that silenced 5,520 genes known or hypothesized to be potential therapeutic targets. Exploiting computational methodologies, we identified 113 siRNAs with potential radiomitigative properties, which were further refined to 29 siRNAs with phosphoinositide-3-kinase regulatory subunit 1 (p85α) being among the highest confidence candidate gene products. Colony formation assays revealed radiation mitigation when the phosphoinositide-3-kinase inhibitor LY294002 was given after irradiation of 32D cl 3 cells (D(0) = 1.3 ± 0.1 Gy and ? = 2.3 ± 0.3 for the vehicle control treated cells compared to D(0) = 1.2 ± 0.1 Gy and ? = 6.0 ± 0.8 for the LY294002 treated cells, P = 0.0004). LY294002 and two other PI3K inhibitors, PI 828 and GSK 1059615, also mitigated radiation-induced apoptosis in NCCIT cells. Treatment of mice with a single intraperitoneal LY294002 dose of 30 mg/kg at 10 min, 4, or 24 h after LD(50/30) whole-body dose of irradiation (9.25 Gy) enhanced survival. This study documents that an unbiased siRNA assay can identify new genes, signaling pathways, and chemotypes as radiation mitigators and implicate the PI3K pathway in the human radiation response.  相似文献   
28.
29.
This review summarizes the previous and current literature on the immunogenetics of idiopathic inflammatory myopathy (IIM) and updates the research progress that has been made over the past decade. A substantial part of the genetic risk for developing adult- and juvenile-onset IIM lies within the major histocompatibility complex (MHC), and a tight relationship exists between individual human leukocyte antigen alleles and specific serological subtypes, which in turn dictate clinical disease phenotypes. Multiple genetic regions outside of the MHC are increasingly being identified in conferring IIM disease susceptibility. We are still challenged with the task of studying a serologically and clinically heterogeneous disorder that is rarer by orders of magnitude than the likes of rheumatoid arthritis. An ongoing and internationally coordinated IIM genome-wide association study may provide further insights into IIM immunogenetics.  相似文献   
30.
The in vivo modified forms of low-density lipoprotein (LDL) are important for the formation of foam cells and as mediators of the immuno-inflammatory process involved in the progression of atherosclerosis. Electronegative LDL, LDL(-), is a LDL subfraction with pro-inflammatory properties that is present in human blood. To investigate possible atheroprotective effects, an anti-LDL(-) single-chain variable fragment (scFv) was expressed in the methylotrophic yeast Pichia pastoris and its activity was evaluated in vitro against macrophages and in experimental atherosclerosis in Ldlr-/- mice. The recombinant 2C7 scFv was produced in a yield of 9.5 mg of protein/L. The specificity and affinity of purified 2C7 scFv against LDL(-) was confirmed by ELISA. To assess the activity of 2C7 scFv on foam cell formation, RAW 264.7 macrophages were exposed to LDL(-) in the presence or absence of 2C7 scFv. The 2C7 scFv inhibited the uptake of LDL(-) by macrophages in a dose-dependent manner, and internalization of LDL(-) by these cells was found to be mediated by the CD36 and CD14 receptor. In addition, compared with untreated cells, lipid accumulation in macrophages was decreased, and the expression of Cd36, Tlr-4 and Cox-2 was downregulated in macrophages treated with 2C7 scFv. Importantly, compared with untreated mice, the treatment of Ldlr-/- mice with 2C7 scFv decreased the atherosclerotic lesion area at the aortic sinus. In conclusion, our data show that 2C7 scFv inhibits foam cell formation and atherosclerotic plaque development by modulating the expression of genes relevant to atherogenesis. These results encourage further use of this antibody fragment in the development of new therapeutic strategies that neutralize the pro-atherogenic effects of LDL(-).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号