首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   83篇
  国内免费   2篇
  2022年   2篇
  2021年   14篇
  2020年   4篇
  2019年   11篇
  2018年   9篇
  2017年   13篇
  2016年   14篇
  2015年   26篇
  2014年   22篇
  2013年   16篇
  2012年   33篇
  2011年   29篇
  2010年   16篇
  2009年   6篇
  2008年   16篇
  2007年   27篇
  2006年   22篇
  2005年   14篇
  2004年   21篇
  2003年   15篇
  2002年   11篇
  2001年   5篇
  2000年   5篇
  1999年   6篇
  1998年   7篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   7篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   6篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1970年   1篇
  1969年   3篇
  1967年   1篇
  1963年   1篇
排序方式: 共有458条查询结果,搜索用时 31 毫秒
61.
Nanostructured V2O5 is emerging as a new cathode material for lithium ion batteries for its distinctly high theoretic capacity over the current commercial cathodes. The main challenges associated with nanostructured V2O5 cathodes are structural degradation, instability of the solid‐electrolyte interface layer, and poor electron conductance, which lead to low capacity and rapid decay of cyclic stability. Here, a novel composite structure of V2O5 nanoparticles encapsulated in 3D networked porous carbon matrix coated on carbon fibers (V2O5/3DC‐CFs) is reported that effectively addresses the mentioned problems. Remarkably, the V2O5/3DC‐CF electrode exhibits excellent overall lithium‐storage performance, including high Coulombic efficiency, excellent specific capacity, outstanding cycling stability and rate property. A reversible capacity of ≈183 mA h g?1 is obtained at a high current density of 10 C, and the battery retains 185 mA h g?1 after 5000 cycles, which shows the best cycling stability reported to date among all reported cathodes of lithium ion batteries as per the knowledge. The outstanding overall properties of the V2O5/3DC‐CF composite make it a promising cathode material of lithium ion batteries for the power‐intensive energy storage applications.  相似文献   
62.
63.
Comparative genomic analysis has revolutionized our ability to predict the metabolic subsystems that occur in newly sequenced genomes, and to explore the functional roles of the set of genes within each subsystem. These computational predictions can considerably reduce the volume of experimental studies required to assess basic metabolic properties of multiple bacterial species. However, experimental validations are still required to resolve the apparent inconsistencies in the predictions by multiple resources. Here, we present combined computational-experimental analyses on eight completely sequenced Pseudomonas species. Comparative pathway analyses reveal that several pathways within the Pseudomonas species show high plasticity and versatility. Potential bypasses in 11 metabolic pathways were identified. We further confirmed the presence of the enzyme O-acetyl homoserine (thiol) lyase (EC: 2.5.1.49) in P. syringae pv. tomato that revealed inconsistent annotations in KEGG and in the recently published SYSTOMONAS database. These analyses connect and integrate systematic data generation, computational data interpretation, and experimental validation and represent a synergistic and powerful means for conducting biological research.  相似文献   
64.
Mammalian thioredoxin reductase (TrxR), a ubiquitous selenocysteine containing oxidoreductase, catalyzes the NADPH-dependent reduction of oxidized thioredoxin (Trx). TrxR has been suggested as a potential target for anticancer drugs development for its overexpression in human tumors and its diverse functions in intracellular redox control, cell growth and apoptosis. Mansonone F (MF) compounds have been shown to exhibit antiproliferative effects, but their complex mechanisms are unknown. In the present study, we have investigated the effects of some synthesized MF analogues on TrxR and HeLa cells. The studies of the mode of inhibition and the interactions of IG3, one of the most potent MF analogues, with TrxR showed MF compounds could be partly reduced by the C-terminal selenolthiol active site, and possibly by the N-terminal dithiol motif and/or FAD domain of TrxR simultaneously, accompanied by redox cycling with the generation of superoxide anion radicals. In addition, MF analogues exhibited the potential to inhibit the growth of HeLa cells and reduce TrxR activity in cell lysates. The cell cycle was arrested in G2/M phase and apoptosis was induced in a dose-dependent manner. Furthermore, our results showed that IG3-treated HeLa cells induced the change of intracellular ROS. Taken together, the reported results here suggest that inhibition of TrxR by MF analogues provides a possible complex mechanism for explaining the anticancer activity of MF compounds.  相似文献   
65.
To enable studies to elucidate the intracellular processing and targeting of the potent cytostatic/apoptotic anticancer natural products phorboxazoles A and B, a fluorescent derivative has been developed. This involved the total syntheses of the terminal alkyne 33-O-Me-45,46-dehydrobromophorboxazole A (MDHBPA) and a terminal vinyl iodide derivative of the blue fluorescent dye N,N,-dimethyl-7-aminocoumarin (DMC). Sonogashira coupling of these partners provided enyne DMC-MDHBPA in high yield.  相似文献   
66.
Intrauterine infection/inflammation (IUI) is a major contributor to preterm labor (PTL). However, IUI does not invariably cause PTL. We hypothesized that quantitative and qualitative differences in immune response exist in subjects with or without PTL. To define the triggers for PTL, we developed rhesus macaque models of IUI driven by lipopolysaccharide (LPS) or live Escherichia coli. PTL did not occur in LPS challenged rhesus macaques, while E. coli–infected animals frequently delivered preterm. Although LPS and live E. coli both caused immune cell infiltration, E. coli–infected animals showed higher levels of inflammatory mediators, particularly interleukin 6 (IL-6) and prostaglandins, in the chorioamnion-decidua and amniotic fluid (AF). Neutrophil infiltration in the chorio-decidua was a common feature to both LPS and E. coli. However, neutrophilic infiltration and IL6 and PTGS2 expression in the amnion was specifically induced by live E. coli. RNA sequencing (RNA-seq) analysis of fetal membranes revealed that specific pathways involved in augmentation of inflammation including type I interferon (IFN) response, chemotaxis, sumoylation, and iron homeostasis were up-regulated in the E. coli group compared to the LPS group. Our data suggest that the intensity of the host immune response to IUI may determine susceptibility to PTL.  相似文献   
67.
A positive correlation between stearoyl-CoA desaturase (SCD)1 expression and metabolic diseases has been reported in rodents and humans. These findings indicate that SCD1 is a promising therapeutic target for the chronic treatment of diabetes and dyslipidemia. The SCD1 enzyme is expressed at high levels in several human tissues and is required for the biosynthesis of monounsaturated fatty acids, which are involved in many biological processes. Liver-targeted SCD inhibitors were designed to pharmacologically manipulate SCD1 activity in the liver to avoid adverse events due to systemic inhibition. This article describes the development of a plasma-based SCD assay to assess the level of SCD inhibition, which is defined in this article as target engagement. Essentially, animals are dosed with an exogenous deuterated tracer (d7-stearic acid) as substrate, and the converted d7-oleic acid product is measured to monitor SCD1 inhibition. This study reveals that this plasma-based assay correlates with liver SCD1 inhibition and can thus have clinical utility.  相似文献   
68.
69.
A local pancreatic renin-angiotensin system: endocrine and exocrine roles   总被引:12,自引:0,他引:12  
The renin-angiotensin system (RAS) is classically characterized as a circulating hormonal system primarily through the production of the physiologically active product angiotensin II (Ang II) that plays a crucial role in the regulation of blood pressure, fluid and electrolyte homeostasis. In addition to this circulating RAS, numerous tissues and organs have been recently demonstrated to exhibit their own RAS products and activities. Such an intrinsic RAS can modulate the specific local functions of their respective tissues and organs, frequently in a paracrine and autocrine manner. Recent findings from our laboratories and others have made a significant contribution on the expression, localization, regulation, and potential role of a local RAS in the pancreas. Although, it is quite intriguing that components of the local pancreatic RAS are responsive to various physiological and pathophysiological conditions, the crucial role of this system in regulating the exocrine and endocrine functions and ultimately the clinical relevance to pancreatic disease is still largely equivocal. Of particular interest in this context are the actions of pancreatic RAS on the growth, anti-proliferation and free radical generation in the pancreas. The aims of the current article focus on the emerging data on the local pancreatic RAS; its involvement in exocrine acinar and endocrine islet aspects, and the clinical significance in the pancreas are particularly addressed. The target for the local pancreatic RAS may provide a new insight into future management of various clinical conditions including islet transplants, diabetes mellitus, pancreatic cancer, pancreatitis and cystic fibrosis.  相似文献   
70.
Recent work has demonstrated concentration-dependent unbinding rates of proteins from DNA, using fluorescence visualization of the bacterial nucleoid protein Fis [Graham et al. (2011) (Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA. Nucleic Acids Res., 39:2249)]. The physical origin of this concentration-dependence is unexplained. We use a combination of coarse-grained simulation and theory to demonstrate that this behavior can be explained by taking into account the dimeric nature of the protein, which permits partial dissociation and exchange with other proteins in solution. Concentration-dependent unbinding is generated by this simple model, quantitatively explaining experimental data. This effect is likely to play a major role in determining binding lifetimes of proteins in vivo where there are very high concentrations of solvated molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号