首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   15篇
  国内免费   1篇
  2023年   6篇
  2022年   7篇
  2021年   10篇
  2020年   3篇
  2019年   6篇
  2018年   5篇
  2017年   10篇
  2016年   12篇
  2015年   20篇
  2014年   19篇
  2013年   23篇
  2012年   27篇
  2011年   24篇
  2010年   10篇
  2009年   7篇
  2008年   8篇
  2007年   13篇
  2006年   17篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   8篇
  2001年   8篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   8篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1980年   1篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
11.
Hydrogen peroxide (H2O2) overload may contribute to cardiac ischemia-reperfusion injury. We report utilization of a previously described cardiomyocyte model (J. Cell. Physiol., 149:347, 1991) to assess the effect of H2O2-induced oxidative stress on heart-muscle purine and pyrimidine nucleotides and high-energy phosphates (ATP, phosphocreatine). Oxidative stress induced by bolus H2O2 elicited the loss of cardiomyocyte purine and pyrimidine nucleotides, leading to eventual de-energization upon total ATP and phosphocreatine depletion. The rate and extent of ATP and phosphocreatine loss were dependent on the degree of oxidative stress within the range of 50 μM to 1.0 mM H2O2. At the highest H2O2 concentration, 5 min was sufficient to elicit appreciable cardiomyocyte highenergy phosphate loss, the extent of which could be limited by prompt elimination of H2O2 from the culture medium. Only H2O2 dismutation completely prevented ATP loss during H2O2-induced oxidative stress, whereas various freeradical scavengers and metal chelators afforded no significant ATP preservation. Exogenously-supplied catabolic substrates and glycolytic or tricarboxylic acidcycle intermediates did not ameliorate the observed ATP and phosphocreatine depletion, suggesting that cardiomyocyte de-energization during H2O2-induced oxidative stress reflected defects in substrate utilization/energy conservation. Compromise of cardiomyocyte nucleotide and phosphocreatine pools during H2O2-induced oxidative stress was completely dissociated from membrane peroxidative damage and maintenance of cell integrity. Cardiomyocyte de-energization in response to H2O2 overload may constitute a distinct nonperoxidative mode of injury by which cardiomyocyte energy balance could be chronically compromised in the post-ischemic heart. © 1993 Wiley-Liss, Inc.  相似文献   
12.
A sheep antiserum against purified rabbit-heart adenylate deaminase (EC 3.5.4.6) (AMPD) was developed and validated as an immunologic probe to assess the cross-species tissue distribution of the mammalian cardiac AMPD isoform. The antiserum and the antibodies purified therefrom recognized both native and denatured rabbit-heart AMPD in immunoprecipitation and immunoblot experiments, respectively, and antibody binding did not affect native enzyme activity. The immunoprecipitation experiments further demonstrated a high antiserum titer. Immunoblot analysis of either crude rabbit-heart extracts or purified rabbit-heart AMPD revealed a major immunoreactive band with the molecular mass (81 kDa) of the soluble rabbit-heart AMPD subunit. AMPD in heart extracts from mammalian species other than rabbit (including human) was equally immunoreactive with this antiserum by quantitative immunoblot criteria. Although generally held to be in the same isoform class as heart AMPD, erythrocyte AMPD was not immunoreactive either within or across species. Nor was AMPD from most other tissues [e.g., white (gastrocnemius) muscle, lung, kidney] immunoreactive with the cardiac-directed antibody. Limited immunoreactivity was evidenced by mammalian liver, red (soleus) muscle, and brain extracts across species, indicating the presence of a minor cardiac(-like) AMPD isoform in these tissues. The results of this study characterize the tissue distribution of the cardiac AMPD isoform using a molecular approach with the first polyclonal antibodies prepared against homogeneous cardiac AMPD. This immunologic probe should prove useful at the tissue level for AMPD immunohistochemistry.  相似文献   
13.
The effects of angiotensin II (AII) and related peptides on the mobilization of internal Ca2+ were studied in a subclone of NG 108-15 cells. The subclone, C1, was prepared by fluorescence-activated cell cloning using a rapid response kinetics and a large response magnitude following stimulation by AII as the selection criteria. Angiotensin I, AII, and angiotensin III (AIII) stimulated Ca2+ mobilization in the C1 cells in a concentration-dependent manner (1 nM-100 microM), yielding EC50 values of 437 +/- 80 nM (n = 4; slope = 1.6 +/- 0.3), 57 +/- 8 nM (n = 12; slope = 1.5 +/- 0.3), and 36 +/- 5 nM (n = 7; slope = 1.4 +/- 0.3), respectively. AIII was significantly more potent than AII (p less than 0.05). In contrast, Des-Phe8-AII, AII-hexapeptide (AII 3-8), and p-NH2-Phe6-AII (1-10 microM) were inactive as agonists. Although the effects of AII and AIII in C1 and parent NG108-15 cells were totally inhibited by the AT1 receptor-selective nonpeptide antagonist, DUP-753 (0.3-1 microM), the AT2-selective antagonists, EXP-655 and CGP42112A (1-10 microM), failed to block the effects of AII. DUP-753 (0.3-100 nM) produced dextral shifts of the AII-induced concentration-response curves and yielded an estimated affinity constant (pA2) of 8.5 +/- 0.2 (n = 16) using single-point analysis involving different concentrations of DUP-753. These data compared well with those obtained for the inhibition of AII-induced aortic contractions by DUP-753 (pA2 = 8.5) reported previously by others.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
14.
15.
16.

Objective

To evaluate the prognostic significance of baseline electrocardiogram (ECG) abnormalities in a multiethnic cohort of patients with early systemic sclerosis (SSc) and to determine the serological, clinical, and echocardiogram correlates of ECG findings.

Methods

SSc patients with disease duration of≤5 years were enrolled in the GENISOS (Genetics versus Environment in Scleroderma Outcome Study) cohort. At the first visit, a standard 12 lead ECG was obtained along with demographic information, clinical data, and autoantibodies. The results of echocardiograms were also recorded. All ECGs were interpreted by a cardiologist unaware of the patients'' clinical data.

Results

Of 265 SSc patients with average disease duration at enrollment of 2.5 years, 140 (52.8%) had abnormal ECG findings. These findings were not associated with SSc disease type or autoantibody profile but were associated with more severe heart and lung involvement. A total of 75 patients (28.3%) died over a follow up time of 9.9 years. Complete right bundle branch block (± left anterior hemiblock) on ECG, present in 7 (2.6%) patients, predicted a higher risk of mortality (HR: 5.3; 95% CI: 2.1 to 13.4; p<0.001). The predictive significance of right bundle branch block was independent of age at enrollment, gender, ethnicity and risk factors for coronary artery disease.

Conclusion

ECG abnormalities are common in patients with early SSc and are associated with the severity of lung and heart involvement. Right bundle branch block is an independent predictor of mortality, and should be considered a marker of disease severity in SSc.  相似文献   
17.
18.
19.
20.
Sharif  Suhela  Shi  Jie  Ruijtenbeek  Rob  Pieters  Roland J. 《Amino acids》2019,51(4):739-743
Amino Acids - O-GlcNAcylation, like phosphorylation, is a dynamic and rapid posttranslational modification which regulates many cellular processes. Phosphorylation on tyrosine and O-GlcNAcylation...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号