全文获取类型
收费全文 | 4805篇 |
免费 | 320篇 |
国内免费 | 341篇 |
专业分类
5466篇 |
出版年
2024年 | 9篇 |
2023年 | 71篇 |
2022年 | 162篇 |
2021年 | 253篇 |
2020年 | 165篇 |
2019年 | 191篇 |
2018年 | 195篇 |
2017年 | 147篇 |
2016年 | 206篇 |
2015年 | 271篇 |
2014年 | 350篇 |
2013年 | 378篇 |
2012年 | 415篇 |
2011年 | 358篇 |
2010年 | 232篇 |
2009年 | 216篇 |
2008年 | 235篇 |
2007年 | 174篇 |
2006年 | 168篇 |
2005年 | 161篇 |
2004年 | 157篇 |
2003年 | 147篇 |
2002年 | 106篇 |
2001年 | 119篇 |
2000年 | 83篇 |
1999年 | 95篇 |
1998年 | 46篇 |
1997年 | 34篇 |
1996年 | 37篇 |
1995年 | 34篇 |
1994年 | 30篇 |
1993年 | 18篇 |
1992年 | 28篇 |
1991年 | 22篇 |
1990年 | 31篇 |
1989年 | 8篇 |
1988年 | 17篇 |
1987年 | 12篇 |
1986年 | 10篇 |
1985年 | 8篇 |
1984年 | 10篇 |
1983年 | 8篇 |
1982年 | 7篇 |
1981年 | 5篇 |
1980年 | 6篇 |
1979年 | 3篇 |
1978年 | 3篇 |
1977年 | 3篇 |
1975年 | 6篇 |
1974年 | 3篇 |
排序方式: 共有5466条查询结果,搜索用时 14 毫秒
71.
Although recent evidence supports a functional relationship between platelet endothelial cell adhesion molecule (PECAM-1) and Syk tyrosine kinase, little is known about the interaction of Syk with PECAM-1. We report that down-regulation of Syk inhibits the spreading of human THP-1 macrophage cells. Moreover, our data indicate that Syk binds PECAM-1 through its immune tyrosine-based inhibitory motif (ITIM), and dual phosphorylation of the ITIM domain of PECAM-1 leads to activation of Syk. Our results indicate that the distance between the phosphotyrosines could be up to 22 amino acids in length, depending on the conformational flexibility, and that the dual ITIM tyrosine motifs of PECAM-1 facilitate immunoreceptor tyrosine-based activation motif-like signaling. The preferential binding of PECAM-1 to Src homology region 2 domain-containing phosphatase-2 or Syk may depend on their relative affinities, and could provide a mechanism by which signal transduction from PECAM-1 is internally regulated by both positive and negative signaling enzymes. 相似文献
72.
73.
74.
M N Washington G Suh A F Orozco M N Sutton H Yang Y Wang W Mao S Millward A Ornelas N Atkinson W Liao R C Bast Jr Z Lu 《Cell death & disease》2015,6(8):e1836
Autophagy can sustain or kill tumor cells depending upon the context. The mechanism of autophagy-associated cell death has not been well elucidated and autophagy has enhanced or inhibited sensitivity of cancer cells to cytotoxic chemotherapy in different models. ARHI (DIRAS3), an imprinted tumor suppressor gene, is downregulated in 60% of ovarian cancers. In cell culture, re-expression of ARHI induces autophagy and ovarian cancer cell death within 72 h. In xenografts, re-expression of ARHI arrests cell growth and induces autophagy, but does not kill engrafted cancer cells. When ARHI levels are reduced after 6 weeks, dormancy is broken and xenografts grow promptly. In this study, ARHI-induced ovarian cancer cell death in culture has been found to depend upon autophagy and has been linked to G1 cell-cycle arrest, enhanced reactive oxygen species (ROS) activity, RIP1/RIP3 activation and necrosis. Re-expression of ARHI enhanced the cytotoxic effect of cisplatin in cell culture, increasing caspase-3 activation and PARP cleavage by inhibiting ERK and HER2 activity and downregulating XIAP and Bcl-2. In xenografts, treatment with cisplatin significantly slowed the outgrowth of dormant autophagic cells after reduction of ARHI, but the addition of chloroquine did not further inhibit xenograft outgrowth. Taken together, we have found that autophagy-associated cancer cell death and autophagy-enhanced sensitivity to cisplatin depend upon different mechanisms and that dormant, autophagic cancer cells are still vulnerable to cisplatin-based chemotherapy.Autophagy has a well-defined role in cellular physiology, removing senescent organelles and catabolizing long-lived proteins.1, 2 Under nutrient-poor conditions, the fatty acids and amino acids produced by hydrolysis of lipids and proteins in autophagolysosomes can provide energy to sustain starving cells. Prolonged autophagy is, however, associated with caspase-independent type II programmed cell death. Although the mechanism of autophagy-associated cell death has not been adequately characterized, programmed necrosis or necroptosis has been implicated in some studies.3, 4Given the ability to sustain or kill cells, the role of autophagy in cancer is complex and dependent on the context of individual studies. During oncogenesis in genetically engineered mice, reduced hemizygous expression of genes required for autophagy (BECN1, Atg4, ATG5, Atg7) can accelerate spontaneous or chemically induced tumor formation,5, 6 suggesting that autophagy can serve as a tumor suppressor. Other observations with established cancers suggest that autophagy can sustain metabolically challenged neoplasms, particularly in settings with inadequate vascular access.7, 8 Autophagy has also been shown to protect cancer cells from the lethal effects of some cytotoxic drugs.9, 10Our group has found that cancer cell proliferation,11, 12, 13 motility,14 autophagy and tumor dormancy15, 16 can be regulated by an imprinted tumor suppressor gene, ARHI (DIRAS3), that is downregulated in 60% of ovarian cancers by multiple mechanisms,17, 18 associated with shortened progression-free survival.19 Ovarian cancer cell sublines have been developed with tet-inducible expression of ARHI. In cell culture, re-expression of ARHI induces autophagy and clonogenic ovarian cancer cell death within 72 h.16 In xenografts, re-expression of ARHI arrests cell growth, inhibits angiogenesis and induces autophagy, but does not kill engrafted cancer cells. When ARHI levels are reduced after 6 weeks of induction, dormancy is broken, vascularization occurs and xenografts grow promptly. Treatment of dormant xenografts with chloroquine (CQ), a functional inhibitor of autophagy, delays tumor outgrowth, suggesting that autophagy facilitates survival of poorly vascularized, nutrient-deprived ovarian cancer cells. The relevance of this model to human disease is supported by the recent observation that small deposits of dormant ovarian cancer found on the peritoneal surface at ‘second look'' operations following initial surgery and chemotherapy exhibit autophagy and increased expression of ARHI in >80% of cases.20Ovarian cancer develops in >22 000 women each year in the United States.21 Over the past four decades, the 5-year survival has increased from 37% to ∼50% with optimal cytoreductive surgery and combination chemotherapy using taxane- and platinum-based regimens,21, 22 but long-term survival and cure stand at ∼30% for all stages, due, in large part, to the persistence and recurrence of dormant, drug-resistant ovarian cancer cells. For the past two decades, standard chemotherapy for ovarian cancer has included a combination of a platinum compound and a taxane. Carboplatin and cisplatin are alkylating agents that bind covalently to DNA producing intra- and inter-strand crosslinks that, if not repaired, induce apoptosis and cell death.23, 24 Our previous studies suggest that ∼20% of primary ovarian cancers exhibit punctate immunohistochemical staining for LC3, a biomarker for autophagy that decorates autophagosome membranes, whereas >80% of cancers that have survived platinum-based chemotherapy exhibit punctate LC3.20 Consequently, autophagy might provide one mechanism of resistance to platinum-based therapy.In this report, we have explored mechanism(s) by which ARHI induces autophagy-associated cell death and enhances cisplatin cytotoxicity. Cisplatin has been found to trigger apoptosis by inducing caspase-3 activation and PARP cleavage in ovarian cancer cells.25, 26 We hypothesized that autophagy-associated cell death and autophagy-enhanced sensitivity to cisplatin depend upon different mechanisms and that dormant, autophagic cancer cells might still be vulnerable to platinum-based chemotherapy. 相似文献
75.
76.
Dai J Li Y Ji C Jin F Zheng Z Wang X Sun X Xu X Gu S Xie Y Mao Y 《Cytogenetic and genome research》2003,103(1-2):74-78
This study reports the cloning and characterization of two novel human zinc finger protein cDNAs (ZNF460 and ZNF461) from a fetal brain cDNA library. The ZNF460 cDNA is 3,135 bp in length encoding a 562-amino-acid polypeptide and the ZNF461 cDNA is 2,548 bp encoding a 563-amino-acid protein. Both of the proteins contain a KRAB A+B box and eleven C2H2 type zinc finger motifs. ZNF461 shows high similarity with the rat GIOT-1 gene (GIOT1). The ZNF460 gene mapped to 19q13.4 with 3 exons, and ZNF461 mapped to 19q13.1 with 6 exons. Both of the two genes are ubiquitously expressed in normal human tissues and the abundance of the ZNF460 mRNA is relatively low. 相似文献
77.
Optimization of the culture methods for nursing Chinese black sleeper (Bostrychus sinensis Lacépède, 1801) fry using an orthogonal array design 下载免费PDF全文
Y. T. Zhang Z. Li S. X. Chen Y. Mao W. S. Hong 《Zeitschrift fur angewandte Ichthyologie》2015,31(6):1096-1101
Chinese black sleeper (Bostrychus sinensis) is a burrow‐dwelling fish found in intertidal mudflats. As a commercially important fish in southern China, the nursing of B. sinensis fry is a critical step for its farming. The growth and survival of B. sinensis fry are closely related to the stocking density, shelter and diet. In this study, 1575 healthy fry were used to investigate the effects of three factors, namely: diet, stocking density, and shelter on the survival rate (SR), specific growth rate (SGR) and condition factor (CF). The optimal combinations of three levels of each of these three factors (A1‐3, B1‐3 and C1‐3) were also determined, using an orthogonal array design of OA9 (34). After 50 days of nursing, the results showed that: (i) the best combinations for the three factors at their optimal levels were A1B1C2 or A1B1C3; (ii) factor A was the most important factor and had significant effects (P < 0.05) on the SR and SGR of the fry, while the other factors had no significant effects (P > 0.05); (iii) the SGR, SR and CF of fry fed with commercial formulated feed (CFF) were significantly higher (P < 0.05) compared to those of fry fed with minced trash fish (MTF); and (iv) the fry fed with MTF mixed with antimicrobial peptides (MTF+AMP) showed higher SGR, SR and CF than those fed with MTF alone, which indicated that the antimicrobial peptides had positive effects on the growth and survival of the fry. 相似文献
78.
79.
80.
Kobayashi T Liu X Wen FQ Kohyama T Shen L Wang XQ Hashimoto M Mao L Togo S Kawasaki S Sugiura H Kamio K Rennard SI 《Biochemical and biophysical research communications》2006,339(1):290-295
Transforming growth factor-beta1 (TGF-beta1) is a key mediator in tissue repair and fibrosis. Using small interference RNA (siRNA), the role of Smad2 and Smad3 in TGF-beta stimulation of human lung fibroblast contraction of collagenous matrix and induction of alpha-SMA and the role of alpha-SMA in contraction were assessed. HFL-1 cells were transfected with Smad2, Smad3 or control-siRNA, and cultured in floating Type I collagen gels +/- -TGF-beta1. TGF-beta1 augmented gel contraction in Smad2-siRNA- and control-siRNA-treated cells, but had no effect in Smad3-siRNA-treated cells. Similarly, TGF-beta1 upregulated alpha-SMA in Smad2-siRNA- and control-siRNA-treated cells, but had no effect on Smad3-siRNA-treated cells. Alpha-SMA-siRNA-treated cells did not contact the collagen gels with or without TGF-beta1, suggesting alpha-SMA is required for gel contraction. Thus, Smad3 mediates TGF-beta1-induced contraction and alpha-SMA induction in human lung fibroblasts. Smad3, therefore, could be a target for blocking contraction of human fibrotic tissue induced by TGF-beta1. 相似文献