首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96627篇
  免费   4689篇
  国内免费   5808篇
  107124篇
  2025年   6篇
  2024年   833篇
  2023年   1445篇
  2022年   3016篇
  2021年   4950篇
  2020年   3417篇
  2019年   4168篇
  2018年   3977篇
  2017年   2905篇
  2016年   4082篇
  2015年   5852篇
  2014年   6893篇
  2013年   7255篇
  2012年   8503篇
  2011年   7741篇
  2010年   4484篇
  2009年   4187篇
  2008年   4779篇
  2007年   4148篇
  2006年   3532篇
  2005年   2822篇
  2004年   2312篇
  2003年   2105篇
  2002年   1698篇
  2001年   1471篇
  2000年   1342篇
  1999年   1407篇
  1998年   819篇
  1997年   892篇
  1996年   813篇
  1995年   775篇
  1994年   673篇
  1993年   570篇
  1992年   682篇
  1991年   535篇
  1990年   456篇
  1989年   331篇
  1988年   278篇
  1987年   219篇
  1986年   184篇
  1985年   209篇
  1984年   124篇
  1983年   118篇
  1982年   54篇
  1981年   23篇
  1980年   20篇
  1979年   18篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
Present work reported the cloning and characterization of a human novel RNA binding gene Partner of NOB1 (PNO1), with a length of 1637bp and a putative open reading frame of 759 bp, isolated from human kidney. It is composed of seven exons and is localized on chromosome 2p14. Western blot showed that the molecular weight of PNO1 is about 35kDa. RT-PCR results in 16 human tissues indicated that PNO1 is expressed mainly in liver, lung, spleen and kidney, slightly in thymus, testis, ovary, respectively, but not in heart, brain, skeletal muscle, placenta, pancreas, prostate, small intestine, colon and peripheral blood leukocytes. GFP fusion expression in mammalian cells exhibited its localization in the nucleus, especially in nucleoli. Subcellular localization of thirteen GFP fusion PNO1 deletion proteins showed that the region of 92-230 aa is solely responsible for its nucleolar retention, and KH domain alone is not sufficient for nucleolar retention. The PNO1 family shows significant conservation in both eukaryotes and prokaryotes.  相似文献   
62.
The Hfq protein is reported to be an RNA chaperone, which is involved in the stress response and the virulence of several pathogens. In E. coli, Hfq can mediate the interaction between some sRNAs and their target mRNAs. But it is controversial whether Hfq plays an important role in S. aureus. In this study, we found that the deletion of hfq gene in S. aureus 8325-4 can increase the surface carotenoid pigments. The hfq mutant was more resistant to oxidative stress but the pathogenicity of the mutant was reduced. We reveal that the Hfq protein can be detected only in some S. aureus strains. Using microarray and qRT-PCR, we identified 116 genes in the hfq mutant which had differential expression from the wild type, most of which are related to the phenotype and virulence of S. aureus. Among the 116 genes, 49 mRNAs can specifically bind Hfq protein, which indicates that Hfq also acts as an RNA binding protein in S. aureus. Our data suggest that Hfq protein of S. aureus is a multifunctional regulator involved in stress and virulence.  相似文献   
63.
Aquaporin Z (AqpZ), a typical orthodox aquaporin with six transmembrane domains, was expressed as a fusion protein with TrxA in E. coli in our previous work. In the present study, three fusion partners (DsbA, GST and MBP) were employed to improve the expression level of this channel protein in E. coli. The result showed that, compared with the expression level of TrxA-AqpZ, five- to 40-fold increase in the productivity of AqpZ with fusion proteins was achieved by employing these different fusion partners, and MBP was the most efficient fusion partner to increase the expression level. By using E. coli C43 (DE3)/pMAL-AqpZ, the effects of different expression conditions were investigated systematically to improve the expression level of MBP-AqpZ in E. coli. The high productivity of MBP-AqpZ (200 mg/l) was achieved under optimized conditions. The present work provides a novel approach to improve the expression level of membrane proteins in E. coli.  相似文献   
64.
As a powerful tool for gene function prediction, gene fusion has been widely studied in prokaryotes and certain groups of eukaryotes, but it has been little applied in studies of mammalian genomes. With the first fully sequenced mammalian genomes (human, mouse, rat) now available, we defined and collected a set of fusion/fission event-linked segments (FFLS) based on structured organized genomic alignment. The statistics of the sequence features highlighted the FFLSs against their random context. We found that there are three groups of FFLSs with different component pairs (i.e. gene-gene, gene-noncoding and noncoding-noncoding) in all three mammalian genomes. The proteins encoded by the components of FFLSs in the first group shown a strong tendency to interact with each other. The segmental components in the last two groups which did not contain any protein-coding genes, were found not only to be transcribed to some level, but also more conserved than the random background. Thus, these segments are possibly carrying certain biologically functional elements. We propose that FFLS may be a potential tool for prediction and analysis of function and functional interaction of genetic elements, including both genes and noncoding elements, in mammalian genomes. The full list of the FFLSs in the genomes of the three mammals is available as supporting information at doi:10.1016/j.jtbi.2005.09.016.  相似文献   
65.
66.
Copper (Cu2+) is an essential nutrient for plants but toxic at high concentrations. We subjected seedlings and young plants of eelgrass Zostera marina to different seawater Cu concentrations (3, 4, 5, 10, 30 and 50?µg?l?1) for over 30 days under controlled laboratory conditions. Natural seawater without added Cu (3?µg?l?1) was used as reference seawater. We measured plant response in terms of survivorship, morphology, growth, productivity and leaf pigment concentration. Survival analysis combined with morphological, dynamic and productive assessment suggested that the optimum seawater Cu concentration for the establishment of Z. marina seedlings and young plants is 4?μg?l?1. The photosynthetic response of young plants to copper enrichment, including an increase in chlorophyll content under low Cu concentration treatment but significant decrease when treated with high concentrations of Cu, is similar to those reported for other seagrass species. NOEC (no observed effect concentration), LOEC (lowest observed effect concentration) and LC50 (lethal concentration that caused an increase in mortality to 50% of that of the control) values of seedlings were significantly lower than those of young plants, implying a reduced Cu tolerance to high concentrations (>10?μg?l?1). This study provides data that could prove helpful in the development of successful eelgrass restoration and conservation.  相似文献   
67.
Guo B  Chen Y  Lei Y  Zhang L  Zhou WY  Rabie AB  Zhao J 《Biomacromolecules》2011,12(4):1312-1321
From the point of better biocompatibility and sustainability, biobased shape memory polymers (SMPs) are highly desired. We used 1,3-propanediol, sebacic acid, and itaconic acid, which have been industrially produced via fermentation or extraction with large quantities as the main raw materials for the synthesis of biobased poly(propylene sebacate). Diethylene glycol was used to tailor the flexibility of the polyester. The resulted polyesters were found to be promising SMPs with excellent shape recovery and fixity (near 100% and independent of thermomechanical cycles). The switching temperature and recovery speed of the SMPs are tunable by controlling the composition of the polyesters and their curing extent. The continuously changed switching temperature ranging from 12 to 54 °C was realized. Such temperature range is typical for biomedical applications in the human body. The molecular and crystalline structures were explored to correlate to the shape memory behavior. The combination of potential biocompatibility and biodegradability of the biobased SMPs makes them suitable for fabricating biomedical devices.  相似文献   
68.
The dysregulation of miR-137 plays vital roles in the oncogenesis and progression of various types of cancer, but its role in prognosis of gastric cancer patients remains unknown. This study was designed to investigate the expression and prognostic significance of miR-137 in gastric cancer patients after radical gastrectomy. Quantitative real-time PCR (qRT-PCR) was performed to evaluate the expression of miR-137 in human gastric cancer cell lines and tissues in patients with gastric adenocarcinoma. Results were assessed for association with clinical factors and overall survival by using Kaplan-Meier analysis. Prognostic values of miR-137 expression and clinical outcomes were evaluated by Cox regression analysis. The results exhibited that the expression level of miR-137 was decreased in human gastric cancer cell lines and tissues, and down-regulated expression of miR-137 was associated with tumor cell differentiation, N stage, and TNM stage. Decreased miR-137 expression in gastric cancer tissues was positively correlated with poor overall survival of gastric cancer patients. Further multivariate Cox regression analysis suggested that miR-137 expression was an independent prognostic indicator for gastric cancer except for TNM stage. Applying the prognostic value of miR-137 expression to TNM stage III group showed a better risk stratification for overall survival. In conclusion, the results reinforced the critical role for the down-regulated miR-137 expression in gastric cancer and suggested that miR-137 expression could be a prognostic indicator for this disease. In addition, these patients with TNM stage III gastric cancer and low miR-137 expression might need more aggressive postoperative treatment and closer follow-up.  相似文献   
69.
70.
Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号