首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7358篇
  免费   644篇
  国内免费   914篇
  8916篇
  2024年   24篇
  2023年   119篇
  2022年   306篇
  2021年   420篇
  2020年   318篇
  2019年   383篇
  2018年   358篇
  2017年   275篇
  2016年   321篇
  2015年   442篇
  2014年   560篇
  2013年   627篇
  2012年   691篇
  2011年   591篇
  2010年   399篇
  2009年   361篇
  2008年   386篇
  2007年   351篇
  2006年   303篇
  2005年   270篇
  2004年   251篇
  2003年   242篇
  2002年   186篇
  2001年   153篇
  2000年   102篇
  1999年   92篇
  1998年   72篇
  1997年   47篇
  1996年   51篇
  1995年   40篇
  1994年   39篇
  1993年   29篇
  1992年   19篇
  1991年   21篇
  1990年   12篇
  1989年   13篇
  1988年   8篇
  1987年   13篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1950年   1篇
排序方式: 共有8916条查询结果,搜索用时 10 毫秒
81.
Ca(2+) channel beta subunits determine the transport and physiological properties of high voltage-activated Ca(2+) channel complexes. Our analysis of the distribution of the Ca(v)beta subunit family members in hippocampal neurons correlates their synaptic distribution with their involvement in transmitter release. We find that exogenously expressed Ca(v)beta(4b) and Ca(v)beta(2a) subunits distribute in clusters and localize to synapses, whereas Ca(v)beta(1b) and Ca(v)beta(3) are homogenously distributed. According to their localization, Ca(v)beta(2a) and Ca(v)beta(4b) subunits modulate the synaptic plasticity of autaptic hippocampal neurons (i.e., Ca(v)beta(2a) induces depression, whereas Ca(v)beta(4b) induces paired-pulse facilitation [PPF] followed by synaptic depression during longer stimuli trains). The induction of PPF by Ca(v)beta(4b) correlates with a reduction in the release probability and cooperativity of the transmitter release. These results suggest that Ca(v)beta subunits determine the gating properties of the presynaptic Ca(2+) channels within the presynaptic terminal in a subunit-specific manner and may be involved in organization of the Ca(2+) channel relative to the release machinery.  相似文献   
82.
Raf kinases are essential for regulating cell proliferation, survival, and tumorigenesis. However, the mechanisms by which Raf is activated are still incompletely understood. Phosphorylation plays a critical role in Raf activation in response to mitogens. The present study characterizes phosphorylation of Ser338, a crucial event for Raf-1 activation. Here we report that mutation of Lys375 to Met diminishes phosphorylation of Ser338 on both wild type Raf-1 in cells treated with epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA) and a constitutively active mutant in which Tyr340/Tyr341 are replaced by 2 aspartic acids, a conserved substitution present in natural B-Raf. The loss of Ser338 phosphorylation in these Raf mutants is not engendered by a mutation-induced conformational change, inasmuch as mutation of another site (Ser471 to Ala) in the activation segment also abolishes Ser338 phosphorylation, whereas both the kinase-dead mutants of Raf-1 are phosphorylated well by active Pak1. Furthermore, our data demonstrate that EGF-stimulated phosphorylation of Ser338 is inhibited by Sorafenib, a Raf kinase inhibitor, but not by the MEK inhibitor U0126. Interestingly, a kinase-dead mutation and Sorafenib also markedly reduce phosphorylation of Ser445 on B-Raf, a site equivalent to Raf-1 Ser338. Finally, our data reveal that Ser338 is phosphorylated on inactive Raf-1 by an active mutant of Raf-1 when they are dimerized in cells and that artificial dimerization of Raf-1 causes Ser338 phosphorylation, accompanied by activation of ERK1/2. Altogether, our data suggest that Ser338 on Raf-1 is autophosphorylated in response to mitogens.  相似文献   
83.
84.
85.
Magnesium has been investigated as a biodegradable metallic material. Increased concentrations of Mg2+ around magnesium implants due to biodegradation contribute to its satisfactory osteogenic capacity. However, the mechanisms underlying this process remain elusive. We propose that activation of the PI3K/Akt signalling pathway plays a role in the Mg2+-enhanced biological behaviours of osteoblasts. To test this hypothesis, 6, 10 and 18 mM Mg2+ was used to evaluate the stimulatory effect of Mg2+ on osteogenesis, which was assessed by evaluating cell adhesion, cell viability, ALP activity, extracellular matrix mineralisation and RT-PCR. The expression of p-Akt was also determined by western blotting. The results showed that 6 and 10 mM Mg2+ elicited the highest stimulatory effect on cell adhesion, cell viability and osteogenic differentiation as evidenced by cytoskeletal staining, MTT assay results, ALP activity, extracellular matrix mineralisation and expression of osteogenic differentiation-related genes. In contrast, 18 mM Mg2+ had an inhibitory effect on the behaviour of osteoblasts. Furthermore, 10 mM Mg2+ significantly increased the phosphorylation of Akt in osteoblasts. Notably, the aforementioned beneficial effects produced by 10 mM Mg2+ were abolished by blocking the PI3K/Akt signalling pathway through the addition of wortmannin. In conclusion, these results demonstrate that 6 mM and 10 mM Mg2+ can enhance the behaviour of osteoblasts, which is at least partially attributed to activation of the PI3K/Akt signalling pathway. Furthermore, a high concentration (18 mM Mg2+) showed an inhibitory effect on the biological behaviour of osteoblasts. These findings advance the understanding of cellular responses to biodegradable metallic materials and may attract greater clinical interest in magnesium.  相似文献   
86.
87.
Radiotherapy (RT) as a preoperative or postoperative adjuvant or primary treatment is the most common management modality for locally advanced cervical cancer. Radioresistance of tumor cells remains a major therapeutic problem. Consequently, we aimed to explore if the stem cell biomarkers SOX2 and OCT4 protein could be used to predict radioresistance in patients with locally advanced cervical squamous cell carcinoma (LACSCC). These 132 patients were divided into two groups (radiation-resistant and radiation-sensitive groups) according to progress-free survival (PFS). Using pretreatment paraffin-embedded tissues, we evaluated SOX2 and OCT4 expression using immunohistochemical staining. The percentage of overexpression of SOX2 and OCT4 in the radiation-resistant group was much higher than that in the radiation-sensitive group (p<0.001 and p <0.001, respectively). The patients with high expression of SOX2 and OCT4 showed a shorter PFS than those with low expression. Our study suggests that the expression of SOX2 and OCT4 in tumor cells indicates resistance to radiotherapy and that these two factors were important predictors of poor survival in patients with LACSCC (hazard ratio [95% CI], 2.294 [1.013, 5.195] and 2.300 [1.050, 5.037], respectively; p=0.046 and p=0.037, respectively).  相似文献   
88.
The assembly of iron-sulfur (Fe-S) clusters involves several pathways and in prokaryotes the mobilization of the sulfur (SUF) system is paramount for Fe-S biogenesis and repair during oxidative stress. The prokaryotic SUF system consists of six proteins: SufC is an ABC/ATPase that forms a complex with SufB and SufD, SufA acts as a scaffold protein, and SufE and SufS are involved in sulfur mobilization from cysteine. Despite the importance of Fe-S proteins in higher plant plastids, little is known regarding plastidic Fe-S cluster assembly. We have recently shown that Arabidopsis harbors an evolutionary conserved plastidic SufC protein (AtNAP7) capable of hydrolyzing ATP and interacting with the SufD homolog AtNAP6. Based on this and the prokaryotic SUF system we speculated that a SufB-like protein may exist in plastids. Here we demonstrate that the Arabidopsis plastid-localized SufB homolog AtNAP1 can complement SufB deficiency in Escherichia coli during oxidative stress. Furthermore, we demonstrate that AtNAP1 can interact with AtNAP7 inside living chloroplasts suggesting the presence of a plastidic AtNAP1.AtNAP6.AtNAP7 complex and remarkable evolutionary conservation of the SUF system. However, in contrast to prokaryotic SufB proteins with no associated ATPase activity we show that AtNAP1 is an iron-stimulated ATPase and that AtNAP1 is capable of forming homodimers. Our results suggest that AtNAP1 represents an atypical plastidic SufB-like protein important for Fe-S cluster assembly and for regulating iron homeostasis in Arabidopsis.  相似文献   
89.
90.
An experimental reduction of offspring number has been reported to result in enlargement of offspring size in lizards. We applied the “follicle excision” technique to a lacertid lizard (Takydromus septentrionalis) to examine whether this effect is generalisable to lizards. Of the 82 females that produced 3 successive clutches in the laboratory, 23 females underwent follicle excision after they oviposited the first clutch. Follicle excision reduced clutch size, but did not alter egg size. This result indicates that egg size is not altered during vitellogenesis in T. septentrionalis. Females undergoing follicle excision produced a third clutch (a second post-surgical clutch) as normally as did control females. Females switched from producing more but smaller eggs early in the breeding season to fewer but larger eggs later in the season. Our results indicate that female T. septentrionalis maximize reproductive success by diverting an optimal, rather than a higher, fraction of the available energy to individual offspring. This optimized allocation of the available energy to offspring production explains why follicle excision does not result in enlargement of egg size in this species. Our study provides evidence that an experimental reduction of offspring number does not always result in enlargement of offspring size in lizards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号