全文获取类型
收费全文 | 106484篇 |
免费 | 1613篇 |
国内免费 | 3060篇 |
专业分类
111157篇 |
出版年
2024年 | 63篇 |
2023年 | 263篇 |
2022年 | 640篇 |
2021年 | 930篇 |
2020年 | 729篇 |
2019年 | 846篇 |
2018年 | 12405篇 |
2017年 | 11102篇 |
2016年 | 8092篇 |
2015年 | 1616篇 |
2014年 | 1543篇 |
2013年 | 1540篇 |
2012年 | 5712篇 |
2011年 | 14150篇 |
2010年 | 12802篇 |
2009年 | 8915篇 |
2008年 | 10549篇 |
2007年 | 11990篇 |
2006年 | 815篇 |
2005年 | 925篇 |
2004年 | 1272篇 |
2003年 | 1294篇 |
2002年 | 976篇 |
2001年 | 347篇 |
2000年 | 258篇 |
1999年 | 126篇 |
1998年 | 84篇 |
1997年 | 81篇 |
1996年 | 62篇 |
1995年 | 43篇 |
1994年 | 45篇 |
1993年 | 54篇 |
1992年 | 51篇 |
1991年 | 70篇 |
1990年 | 29篇 |
1989年 | 23篇 |
1988年 | 29篇 |
1987年 | 20篇 |
1985年 | 19篇 |
1984年 | 12篇 |
1983年 | 19篇 |
1982年 | 6篇 |
1975年 | 6篇 |
1972年 | 247篇 |
1971年 | 274篇 |
1965年 | 14篇 |
1962年 | 24篇 |
1956年 | 5篇 |
1944年 | 12篇 |
1940年 | 10篇 |
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
71.
Kimball and Wilson1 reported that the arabinose analogue of cytidine (ara-C) inhibited DNA polymerase in a crude extract prepared from Ehrlich ascites cells. Furth and Cohen2 observed cytosine arabinoside triphosphate (ara-CTP) inhibited DNA polymerase in extracts from either calf thymus or bovine lymphosarcoma tissue, although these investigators3 had already found no effect of ara-CTP on DNA polymerase from Escherichia coli. The inhibition in both of these cases could be substantially reversed by dCTP; but incorporation of the arabinose nucleotide (ara-CMP) into DNA could not be unequivocally demonstrated. Graham and Whitmore4 reported the incorporation of ara-C into DNA in vivo and the inhibition of a DNA polymerase from L cells by ara-CTP. They found that ara-CMP was initially incorporated into small DNA strands but subsequently appeared in long strands. Momparler5 has presented evidence that, in vitro, ara-C incorporation was limited to the 3′-hydroxyl end of DNA chains. Such incorporation might be expected to block further chain elongation but this expectation was not supported by the evidence presented by Graham and Whitmore. 相似文献
72.
ALINA TAYLOR 《Nature: New biology》1971,234(48):144-145
JACOB and Fuerst1,2 demonstrated the presence of a bacteriolytic enzyme (λ-endolysin) in the induced cultures of lysogenic Escherichia coli K12 (λ). The enzyme was later identified as the product of gene R; of phage λ3 which is involved in bacterial lysis at the end of a latent period. The enzyme is apt to form spheroplast-like structures in E. coli2 and one would therefore expect its substrate to be murein. 相似文献
73.
74.
75.
Perin L. Donnini M. Diomede L. Romano M. Tacconi M. T. Luisetti M. Salmona M. 《Cytotechnology》1991,7(1):25-32
An expression vector for G-CSF, pASLB3-3, was constructed and introduced into Namalwa KJM-1 cells (Hosoi et al., 1988), and cells resistant to 100 nM of methotrexate (MTX) were obtained. Among them, the highest producer, clone SC57, was selected and the productivity of this clone was further characterized. The maximal production of G-CSF was at the most 1.8 g/ml/day using a 25 cm2 tissue culture flask, even though the cell number was above 7×105 cells/ml. The limiting factors at high density were analyzed as the deficiency of nutrients, such as glucose, cysteine and serine, and pH control. The depression of specific G-CSF productivity per cell under the batch culture conditions was overcome by using a perfusion culture system, BiofermenterTM (Sato, 1983) with modifications of nutrients supplementation by a dialysis membrane and/or dissolved oxygen (DO) supplementation by microsilicone fibers. ITPSGF medium was modified to elevate concentrations of amino acids and glucose by 2.0- and 2.5-times, respectively. Under the control of pH at 7.4 and DO at 3 ppm, the specific G-CSF productivity was not depressed even at high cell density (above 1×107 cells/ml), and the amount of G-CSF reached 41 g/ml. These results indicated the possibility of finding the optimum culture conditions for the production of recombinant proteins by Namalwa KJM-1 cells.Abbreviations ABTS
2,2-Azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid
- BSA
Bovine Serum Albumin
- BSA-PBS
Phosphate-buffered Saline without Ca2+ and Mg2+ containing Bovine Serum Albumin
- dhfr
Dihydrofolate Reductase
- DO
Dissolved Oxygen
- G-CSF
Granulocyte Colony-stimulating Factor
- HEPES
4-(2-Hydroxyethyl)-1-piperazineethansulfonic Acid
- IFN
Interferon
- MTX
Methotrexate
- PBS(-)
Phosphate-buffered saline without Ca2+ and Mg2+
- Tween-PBS
Phosphate-buffered saline without Ca2+ and Mg2+ containing 0.05% of Tween 20 相似文献
76.
Guno Haskå 《Microbial ecology》1975,1(1):234-245
Myxobacteria presumably produce extracellular bacteriolytic enzymes when they are growing in soil. In order to study their ecological significance, adsorption experiments were performed with lytic enzymes produced byMyxococcus virescens in casitone media. Different soils as well as montmorillonite and kaolinite can rapidly adsorb the bacteriolytic but not the proteolytic enzymes. About 1 gm of montmorillonite per liter of cell-free culture solution is enough for the adsorption of 97% of the bacteriolytic enzymes. The adsorption per unit weight is about 100 times greater on montmorillonite than on kaolinite. About 40% of the adsorbed enzymes can be eluted with solutions of high pH or high ionic strength. The only desorbed bacteriolytic enzyme is the alanyl-∈-N-lysine endopeptidase. 相似文献
77.
78.
Weixiao Lei Zefu Wang Man Cao Hui Zhu Min Wang Yi Zou Yunchun Han Dandan Wang Zeyu Zheng Ying Li Bingbing Liu Dafu Ru 《DNA research》2022,29(3)
Sophora japonica is a medium-size deciduous tree belonging to Leguminosae family and famous for its high ecological, economic and medicinal value. Here, we reveal a draft genome of S. japonica, which was ∼511.49 Mb long (contig N50 size of 17.34 Mb) based on Illumina, Nanopore and Hi-C data. We reliably assembled 110 contigs into 14 chromosomes, representing 91.62% of the total genome, with an improved N50 size of 31.32 Mb based on Hi-C data. Further investigation identified 271.76 Mb (53.13%) of repetitive sequences and 31,000 protein-coding genes, of which 30,721 (99.1%) were functionally annotated. Phylogenetic analysis indicates that S. japonica separated from Arabidopsis thaliana and Glycine max ∼107.53 and 61.24 million years ago, respectively. We detected evidence of species-specific and common-legume whole-genome duplication events in S. japonica. We further found that multiple TF families (e.g. BBX and PAL) have expanded in S. japonica, which might have led to its enhanced tolerance to abiotic stress. In addition, S. japonica harbours more genes involved in the lignin and cellulose biosynthesis pathways than the other two species. Finally, population genomic analyses revealed no obvious differentiation among geographical groups and the effective population size continuously declined since 2 Ma. Our genomic data provide a powerful comparative framework to study the adaptation, evolution and active ingredients biosynthesis in S. japonica. More importantly, our high-quality S. japonica genome is important for elucidating the biosynthesis of its main bioactive components, and improving its production and/or processing. 相似文献
79.
Lei Deng Yunyun Zeng Hui Liu Zixuan Liu Xuejun Liu 《Current issues in molecular biology》2022,44(5):2287
Drug-target interactions provide insight into the drug-side effects and drug repositioning. However, wet-lab biochemical experiments are time-consuming and labor-intensive, and are insufficient to meet the pressing demand for drug research and development. With the rapid advancement of deep learning, computational methods are increasingly applied to screen drug-target interactions. Many methods consider this problem as a binary classification task (binding or not), but ignore the quantitative binding affinity. In this paper, we propose a new end-to-end deep learning method called DeepMHADTA, which uses the multi-head self-attention mechanism in a deep residual network to predict drug-target binding affinity. On two benchmark datasets, our method outperformed several current state-of-the-art methods in terms of multiple performance measures, including mean square error (MSE), consistency index (CI), , and PR curve area (AUPR). The results demonstrated that our method achieved better performance in predicting the drug–target binding affinity. 相似文献
80.
Qiang Lv Shuang Han Lei Wang Jinchan Xia Peng Li Ruoyang Hu Jinzheng Wang Lei Gao Yuli Chen Yu Wang Jing Du Fang Bao Yong Hu Xingzhi Xu Wei Xiao Yikun He 《Nucleic acids research》2022,50(12):6820
Nitric oxide (NO) is a key player in numerous physiological processes. Excessive NO induces DNA damage, but how plants respond to this damage remains unclear. We screened and identified an Arabidopsis NO hypersensitive mutant and found it to be allelic to TEBICHI/POLQ, encoding DNA polymerase θ. The teb mutant plants were preferentially sensitive to NO- and its derivative peroxynitrite-induced DNA damage and subsequent double-strand breaks (DSBs). Inactivation of TEB caused the accumulation of spontaneous DSBs largely attributed to endogenous NO and was synergistic to DSB repair pathway mutations with respect to growth. These effects were manifested in the presence of NO-inducing agents and relieved by NO scavengers. NO induced G2/M cell cycle arrest in the teb mutant, indicative of stalled replication forks. Genetic analyses indicate that Polθ is required for translesion DNA synthesis across NO-induced lesions, but not oxidation-induced lesions. Whole-genome sequencing revealed that Polθ bypasses NO-induced base adducts in an error-free manner and generates mutations characteristic of Polθ-mediated end joining. Our experimental data collectively suggests that Polθ plays dual roles in protecting plants from NO-induced DNA damage. Since Polθ is conserved in higher eukaryotes, mammalian Polθ may also be required for balancing NO physiological signaling and genotoxicity. 相似文献