全文获取类型
收费全文 | 147752篇 |
免费 | 4846篇 |
国内免费 | 5284篇 |
专业分类
157882篇 |
出版年
2024年 | 143篇 |
2023年 | 792篇 |
2022年 | 1859篇 |
2021年 | 3051篇 |
2020年 | 2088篇 |
2019年 | 2510篇 |
2018年 | 13586篇 |
2017年 | 11931篇 |
2016年 | 9613篇 |
2015年 | 4187篇 |
2014年 | 4660篇 |
2013年 | 4729篇 |
2012年 | 9325篇 |
2011年 | 17154篇 |
2010年 | 14502篇 |
2009年 | 10541篇 |
2008年 | 12479篇 |
2007年 | 13756篇 |
2006年 | 2505篇 |
2005年 | 2381篇 |
2004年 | 2452篇 |
2003年 | 2408篇 |
2002年 | 1839篇 |
2001年 | 1162篇 |
2000年 | 1049篇 |
1999年 | 834篇 |
1998年 | 509篇 |
1997年 | 476篇 |
1996年 | 487篇 |
1995年 | 422篇 |
1994年 | 419篇 |
1993年 | 354篇 |
1992年 | 466篇 |
1991年 | 361篇 |
1990年 | 291篇 |
1989年 | 267篇 |
1988年 | 227篇 |
1987年 | 207篇 |
1986年 | 176篇 |
1985年 | 154篇 |
1984年 | 122篇 |
1983年 | 139篇 |
1982年 | 83篇 |
1980年 | 52篇 |
1979年 | 63篇 |
1976年 | 46篇 |
1974年 | 54篇 |
1973年 | 45篇 |
1972年 | 299篇 |
1971年 | 300篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Mitchell S. Weisenberger Tara L. Deans 《Journal of industrial microbiology & biotechnology》2018,45(7):599-614
Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior. This extracellular space offers an addition route for synthetic biologists to apply their engineering principles to program cell-responsive modules within the extracellular space using biomaterials. In this review, we discuss how taking a bottom-up approach to build genetic circuits using DNA modules can be applied to biomaterials for controlling cell behavior from the extracellular milieu. We suggest that, by collectively controlling intrinsic and extrinsic signals in synthetic biology and biomaterials, tissue engineering outcomes can be improved. 相似文献
992.
993.
Alzheimer’s disease (AD) is characterized by an excessive accumulation of toxic amyloid beta (Aβ) plaques and memory dysfunction. The onset of AD is influenced by age, genetic background, and impaired glucose metabolism in the brain. Several studies have demonstrated that diabetes involving insulin resistance and glucose tolerance could lead to AD, ultimately resulting in cognitive dysfunction. Even though the relationship between diabetes and AD was indicated by significant evidences, the critical mechanisms and metabolic alterations in diabetes induced AD are not clear until now. Recently, iron metabolism has been shown to play multiple roles in the central nervous system (CNS). Iron deficiency and overload are associated with neurodegenerative diseases. Iron binds to Aβ and subsequently regulates Aβ toxicity in the CNS. In addition, previous studies have shown that iron is involved in the aggravation of insulin resistance. Considering these effects of iron metabolism in CNS, we expect that iron metabolism may play crucial roles in diabetic AD brain. Thus, we review the recent evidence regarding the relationship between diabetes-induced AD and iron metabolism. 相似文献
994.
有害疣孢霉Hypomyces perniciosus是引起双孢蘑菇Agaricus bisporus湿泡病的病原真菌,目前其致病分子机理尚不清楚,而高效稳定的遗传转化体系和突变体库构建是挖掘和研究病原菌致病基因的基础和有效手段。因此,本实验以高致病力的有害疣孢霉菌株WH001为研究对象,采用冻融法将双元载体pBHt1转入农杆菌AGL-1中,建立并优化根癌农杆菌介导的遗传转化体系,并利用其构建T-DNA插入突变体库。结果表明有害疣孢霉菌株WH001的潮霉素(Hygromycin,Hyg)耐受浓度为250ng/L,当农杆菌侵染液浓度OD600=1,侵染时间为30min,乙酰丁香酮(Acetosyringone,AS)浓度为1.5mg/mL,共培养时间为3d时,转化体系效率最高。然后利用该优化体系构建有害疣孢霉的突变体库,通过PCR检测和形态学鉴定获得若干表型发生改变、稳定遗传的T-DNA插入突变体,与原菌种WH001相比,突变体在菌丝形态、生长速率、色素分泌和致病力等方面发生改变。本研究为进一步挖掘有害疣孢霉未知基因功能、解析生物学性状、探讨致病分子机制奠定基础。 相似文献
995.
Cement plants account for significant emissions of CO2 and other pollutants into the atmosphere. As a means for its mitigation, we tested the effect of a cement industry-based flue gas simulation (FGS — 18% CO2, 9% O2, 300 ppm NO2, 140 ppm SO2) on the green alga, Chlorella sorokiniana. Culture pH, cell density, cell viability and productivity, specific growth rates, photosynthetic performance, and biochemical composition were monitored. The treatments consisted of different FGS volumes (0.1, 0.3, 0.8, 1.5, 6, and 48 L day?1) that were applied in a series of laboratory-scale semi-continuous batch cultures under controlled conditions. Controls were exposed to 18% CO2 enriched air. Cell density showed that C. sorokiniana was able to grow in all treatments, but compared to the controls, low pH (~ 5.0) caused by 48 L FGS day?1 led to 27% decrease in specific growth rate. Increasing FGS exposure decreased maximum and operational quantum yields obtained by pulse amplitude modulated fluorometry, while photochemical quenching remained constant (~ 0.93). The α and rETR max parameters calculated from rapid light curves decreased with increasing FGS exposure. Total proteins and carbohydrates (per cell basis) increased after 6 and 48 L FGS day?1, which can be advantageous for biotechnological applications, but cell productivity (cells L?1 day?1) decreased. Despite the effects in physiology, C. sorokiniana could withstand a pH range of 6.0–5.0 imposed by 48 L FGS day?1. Overall, C. sorokiniana can be considered a robust species in flue gas bioremediation. 相似文献
996.
Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice 总被引:1,自引:0,他引:1
Ahmad A. Omar Mayara M. Murata Hesham A. El-Shamy James H. Graham Jude W. Grosser 《Transgenic research》2018,27(2):179-191
Genetic engineering approaches offer an alternative method to the conventional breeding of Citrus sp. ‘W. Murcott’ mandarin (a hybrid of ‘Murcott’ and an unknown pollen parent) is one of the most commercially important cultivars grown in many regions around the world. Transformation of ‘W. Murcott’ mandarin was achieved by direct DNA uptake using a protoplast transformation system. DNA construct (pAO3), encoding Green Fluorescent Protein (GFP) and the cDNA of Xa21, a Xanthomonas resistance gene from rice, was used to transform protoplasts of ‘W. Murcott’ mandarin. Following citrus protoplast culture and regeneration, transformed micro calli were microscopically designated via GFP expression, physically isolated from non-transformed tissue, and cultured on somatic embryogenesis induction medium. More than 150 transgenic embryos were recovered and from them, ten transgenic lines were regenerated and cultured on rooting medium for shoot elongation. Transgenic shoots were micrografted and established in the greenhouse with 3–5 replicates per line. The insertion of Xa21 and GFP was confirmed by PCR and southern blot analysis. GFP expression was verified by fluorescence microscopy and western blot analysis revealed expression of Xa21 although it was variable among transgenic lines, as shown by RT-qPCR. Transgenic plants challenged with the citrus canker pathogen by syringe inoculation showed a reduction in lesion number and bacterial populations within lesions compared to non-transgenic control plants. Transgenic ‘W. Murcott’ mandarin lines with improved canker resistance via protoplast transformation from embryogenic callus with the Xa21 gene from rice are being evaluated under field conditions to validate the level of resistance. 相似文献
997.
Tianyu Yu Bin Liu Zhigang He Muqing Yang Jian Song Cheng Ma Sunqiang Ma Junlan Feng Xiaodong Wang Jiyu Li 《In vitro cellular & developmental biology. Animal》2018,54(10):705-714
Mast cells (MCs) are responsible for the innate immune response. Rat MCs are more suitable than mouse MCs as models of specific parasite infection processes and ovalbumin-induced asthma. Rat peritoneum-derived MCs and RBL-2H3 cells (an MC cell line) are widely used in disease studies. However, the application of rat bone marrow-derived MCs (BMMCs) are poorly documented in terms of the methodology of rat BMMC isolation. Here, we describe a relatively rapid, efficient, and simple method for the cultivation of rat BMMCs. As compared to previous protocols, rat BMMCs produced with the proposed protocol exhibited advantages in differentiation, proliferation, lifespan, and functionality, which should prove useful for studies of mucosal MC diseases in specific rat models. 相似文献
998.
Yongmei Guo Sumei Yan Jian Gong Lu Jin Binlin Shi 《Biological trace element research》2018,184(1):75-82
To elucidate the effect of selenium (Se) on antioxidant function of mammary glands in dairy cows and the underlying mechanism, an experiment was conducted using a single-factor completely randomized design study. Bovine mammary epithelial cells (BMECs) were randomly divided into four groups: control, Se treatment, 2,4-dinitrochlorobenzene (DNCB) inhibition, and Se prevention. Treatment of BMECs with Se was found to significantly reverse decreased cell proliferation and the expression of thioredoxin reductase (TrxR) after DNCB exposure. DNCB-induced activation of apoptosis signaling kinase-1 (ASK-1), which activates the mitogen-activated protein kinase (MAPK) pathway, was reduced in BMECs treated with Se. Additionally, our results indicated that Se treatment resulted in lower intracellular accumulation of arachidonic acid (ARA) and 15-hydroperoxyeicosatetraenoic acid (15-HPETE) due to suppressed expression of cytosolic phospholipase A2 (cPLA2) regulated by p38MAPK and c-Jun N-terminal kinase (JNK) in DNCB-stimulated BMECs. Taken together, these findings suggest that Se treatment improved the antioxidant function of dairy cow mammary glands and protected cells from oxidative damage primarily by increasing the activity of TrxR, inhibiting the activation of the MAPK signaling pathway, and thus decreasing the content of ARA and its related metabolites. 相似文献
999.
Li Wu Linli Huang Zicheng Ouyang Liuqin He Qinghua He 《Biological trace element research》2018,184(2):436-441
Zinc plays a role in alleviating oxidative stress. However, the related mechanisms remain to be further elucidated. The present study was conducted to investigate whether the recovery of oxidative stress in high-fat-diet (HFD)-pretreated mice was affected by zinc. Male mice received either an HFD or a low-fat-diet (LFD) for 8 weeks. Then, the mice fed with HFD and LFD were both assigned to either a control diet (30 mg zinc, ZD) or a no-added zinc diet (NZD) for an additional 4 weeks. The results showed that after feeding with NZD for 4 weeks, the HFD-pretreated mice had the highest plasma glucose and insulin concentrations, while had the lowest CuZn-SOD and glutathione concentrations. Moreover, after feeding with NZD for 4 weeks, the HFD-pretreated mice had the highest hepatic ROS and homocysteine concentrations, while had the lowest glutathione and methionine concentrations. Furthermore, the HFD-pretreated mice fed with NZD for 4 weeks had the lowest gene and protein expression of betaine homocysteine-S-methyltransferase (BHMT), cystathionine β-synthase, and Sp1. The results suggested that zinc was critical for oxidative stress alleviation and homocysteine clearance in HFD-pretreated mice. It was further elucidated that improved Sp1 and BHMT expression are involved in the effects of zinc on oxidative stress. 相似文献
1000.
David Yang-Wei Fann Yun-An Lim Yi-Lin Cheng Ker-Zhing Lok Prasad Chunduri Sang-Ha Baik Grant R. Drummond S. Thameem Dheen Christopher G. Sobey Dong-Gyu Jo Christopher Li-Hsian Chen Thiruma V. Arumugam 《Molecular neurobiology》2018,55(2):1082-1096
Multi-protein complexes, termed “inflammasomes,” are known to contribute to neuronal cell death and brain injury following ischemic stroke. Ischemic stroke increases the expression and activation of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) Pyrin domain containing 1 and 3 (NLRP1 and NLRP3) inflammasome proteins and both interleukin (IL)-1β and IL-18 in neurons. In this study, we provide evidence that activation of either the NF-κB and MAPK signaling pathways was partly responsible for inducing the expression and activation of NLRP1 and NLRP3 inflammasome proteins and that these effects can be attenuated using pharmacological inhibitors of these two pathways in neurons and brain tissue under in vitro and in vivo ischemic conditions, respectively. Moreover, these findings provided supporting evidence that treatment with intravenous immunoglobulin (IVIg) preparation can reduce activation of the NF-κB and MAPK signaling pathways resulting in decreased expression and activation of NLRP1 and NLRP3 inflammasomes, as well as increasing expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL, in primary cortical neurons and/or cerebral tissue under in vitro and in vivo ischemic conditions. In summary, these results provide compelling evidence that both the NF-κB and MAPK signaling pathways play a pivotal role in regulating the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons and brain tissue under ischemic conditions. In addition, treatment with IVIg preparation decreased the activation of the NF-κB and MAPK signaling pathways, and thus attenuated the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons under ischemic conditions. Hence, these findings suggest that therapeutic interventions that target inflammasome activation in neurons may provide new opportunities in the future treatment of ischemic stroke. 相似文献