首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   749篇
  免费   48篇
  2022年   8篇
  2021年   8篇
  2020年   11篇
  2019年   11篇
  2018年   11篇
  2017年   10篇
  2016年   16篇
  2015年   26篇
  2014年   26篇
  2013年   42篇
  2012年   38篇
  2011年   45篇
  2010年   30篇
  2009年   30篇
  2008年   29篇
  2007年   29篇
  2006年   25篇
  2005年   36篇
  2004年   15篇
  2003年   22篇
  2002年   28篇
  2001年   11篇
  2000年   16篇
  1999年   15篇
  1997年   5篇
  1995年   4篇
  1993年   6篇
  1992年   10篇
  1991年   13篇
  1990年   9篇
  1989年   8篇
  1988年   17篇
  1987年   12篇
  1986年   5篇
  1985年   13篇
  1984年   7篇
  1983年   4篇
  1982年   7篇
  1981年   11篇
  1980年   13篇
  1979年   19篇
  1978年   11篇
  1977年   8篇
  1976年   7篇
  1975年   4篇
  1974年   10篇
  1973年   11篇
  1971年   7篇
  1970年   7篇
  1968年   6篇
排序方式: 共有797条查询结果,搜索用时 15 毫秒
31.
The investigation of D. halimifolia afrorded a new glaucolide and two sesquiterpene lactones with an additional propiolactone ring, one elemanolide and one modified germacranolide with an additional ring. Furthermore, two tremetone derivatives were present, a hydroxy-geranylgeraniol, also present in a Kingianthus species, and several known compounds.  相似文献   
32.
The influence of exogenous thyroxine was studied on the hepatic glycogen content and glucose-6-phosphatase activity of rats of different age groups. The glycogen content and glucose-6-phosphatase activity were found to be decreased in the livers of 5, 15, 30 and 60-day-old rats after thyroxine treatment. In normal rats of 5, 15, 30 and 60-day-old, a gradual rise in both the hepatic glycogen content and glucose-6-phosphatase activity was noted as the age advanced from immature to adult.  相似文献   
33.
G Khoury  P Gruss  R Dhar  C J Lai 《Cell》1979,18(1):85-92
  相似文献   
34.
Changes in carbohydrate and lipid metabolism during embryonic development inAntheraea mylitta were studied. While carbohydrates were metabolized during early embryogenesis, lipids were catabolised at the later stages. A significant increase in both total carbohydrates and glycogen on days 5 and 6 suggested the concurrent occurrence of both gluconeogenesis and glycogenesis. As the development of the embryo proceeds, both lipids and carbohydrates were utilised, resulting in the increase in the concentration of citrate, pyruvate and lactate.  相似文献   
35.
36.
A new 3,7-dioxabicyclo[3,3,O]octane lignan, named justisolin, and a new lignan O-glucoside, named simplexoside, were isolated from the whole plant of Justicia simplex D. Don. (Acanthaceae), collected at fruiting. The structure of the free lignan was established as 2e-(3,4-methylenedioxy-6-hydroxy)-phenyl-6e- Piperonyl-3,7-dioxabicyclo[3,3,0]octane (1) and that of the glucoside as 2e-(3-methoxy-4-O-β-d- glucopyranosyl)-phenyl-6e-piperonyl-3,7-dioxabicyclo[3,3,0]octane (2) on the basis of chemical transformation and spectral evidence. The biological functions of these and related lignans are appraised.  相似文献   
37.
Sponges accommodate a diverse group of microorganisms with varied metabolic capabilities. The bacterial associates of sponges are widely studied while our understanding of archaeal counterparts is scanty. In the present study, we report the archaeal associates of two sponges, Pseudoceratina purpurea (NCBI barcode: KX454492) and Cinachyra sp. (NCBI barcode: KX454495), found in the coral reef ecosystems of Gulf of Mannar, India. Archaea in the water column was predominated by members of class Halobacteria of Phylum Euryarchaeota (97%) followed by a minor fraction (3%) of Nitrosopumilus sp. of phylum Thaumarchaeota. Interestingly, Thaumarchaeota was identified as the sole archaeal population associated with the two sponges studied, among which Nitrosopumilus sp. occuppied 80 and 100% of the sequences in the clone library of P. purpurea and Cinachyra sp. respectively. Other archaea found in the P. purpurea were Nitrososphaera (10%) and unclassified ones (10%). The study identified Nitrosopumilus sp. as a unique symbiotic archaeon of sponges, P. purpurea and Cinachyra sp. The existence of host driven factors in selecting specific associates from a diverse group of archaea in the environment may need further investigations.  相似文献   
38.
Breast cancer subtype-specific molecular variations can dramatically affect patient responses to existing therapies. It is thought that differentially phosphorylated protein isoforms might be a useful prognostic biomarker of drug response in the clinic. However, the accurate detection and quantitative analysis of cancer-related protein isoforms and phospho-isoforms in tumors are limited by current technologies. Using a novel, fully automated nanocapillary electrophoresis immunoassay (NanoProTM 1000) designed to separate protein molecules based on their isoelectric point, we developed a reliable and highly sensitive assay for the detection and quantitation of AKT isoforms and phosphoforms in breast cancer. This assay enabled the measurement of activated AKT1/2/3 in breast cancer cells using protein produced from as few as 56 cells. Importantly, we were able to assign an identity for the phosphorylated S473 phosphoform of AKT1, the major form of activated AKT involved in multiple cancers, including breast, and a current focus in clinical trials for targeted intervention. The ability of our AKT assay to detect and measure AKT phosphorylation from very low amounts of total protein will allow the accurate evaluation of patient response to drugs targeting activated PI3K-AKT using scarce clinical specimens. Moreover, the capacity of this assay to detect and measure all three AKT isoforms using one single pan-specific antibody enables the study of the multiple and variable roles that these isoforms play in AKT tumorigenesis.Activation of the PI3K-AKT signaling pathway is one of the most common events in cancer (1, 2). Pathway activation can confer a number of advantages to the cancer cells, including enhanced proliferation and survival (1, 2). Multiple mechanisms exist by which the pathway may become activated, including amplification or activation of receptor tyrosine kinases (e.g. ERBB2 in breast and EGFR in lung tumors), mutation of the catalytic or regulatory subunits of PI3K (e.g. PIK3CA in colorectal and breast tumors), loss of the negative regulator PTEN (e.g. mutation in prostate and melanoma), and gain of function of AKT (e.g. amplification or mutation in breast and pancreatic tumors) (reviewed in Refs. 1 and 2).AKT represents a central node in the PI3K signaling cascade (3). AKT is recruited to the cell membrane via its pleckstrin homology domain when PI3K phosphorylates PIP2 to form PIP3 (4, 5). Following recruitment, AKT is phosphorylated by PDK1 and the rictor-mTOR complex, resulting in conformational changes and activation of the protein (58). Multiple studies have shown that the phosphorylation of AKT leads to the phosphorylation and activation of downstream effectors of the signaling pathway, such as mTOR complex 1 and S6K (reviewed in Ref. 1). The central role of this pathway in cancer is further underscored by the efforts of multiple pharmaceutical companies that have developed inhibitors against AKT as potential anti-oncogenic therapeutics (9).Despite the importance of AKT in growth and survival signaling in cancer, there are surprisingly few data that address the specific roles played in growth and survival by the multiple AKT family members (AKT-1, -2, and -3) and different phosphorylation and putative phosphorylation sites that can potentially activate the protein. Western blot analysis has been the foundation of most AKT studies, but in many cases pan-AKT antibodies have been employed that fail to distinguish between the different AKT isoforms. Recent siRNA silencing studies have indicated distinct functions for different AKT family members within a cell (10, 11). Moreover, there is evidence in breast cancer that the three isoforms exhibit different localizations and therefore must have at least partially distinct functions (12). Similarly, evidence is mounting for multiple phosphorylation sites in AKT beyond the two most studied phosphorylation events (Thr-308 and Ser-473) (58). Phosphorylation at serine and threonine residues at Thr-72 and Ser-246 may be required for the activation or regulation of kinase activity (13). The functional significance of constitutive phosphorylation of Ser-124 and Thr-450 is still unknown (14). Finally, there is evidence that phosphorylation of tyrosine residues at Tyr-315 and Tyr-326 is required for full kinase activity (15).Analysis of such phospho- and isoform-specific activation often requires complicated in-depth analyses using large quantities of proteins, purified recombinant protein, immunoprecipitation, incorporation of 32P isotopes, and/or mass spectroscopy, which makes such studies more difficult to perform and not easily adaptable to clinical specimens. Thus, better methods are required for the accurate assessment of both phosphoform and isoform usage in cells with an activated PI3K-AKT pathway and the effects of pathway inhibitors using relatively small amounts of starting material. We describe here the development of such an assay using nanocapillary-based isoelectric focusing (16). This approach allows the separation of AKT into distinct peaks that correspond to different iso- and phosphoforms using a small amount of starting material and a single pan-specific antibody. This approach should allow for more accurate determinations of isoform usage in different cell types, as well as of changes in phosphorylation states in response to pathway inhibition, including in clinical specimens.  相似文献   
39.
Adipocytes play a vital role in glucose metabolism. 3T3 L1 pre adipocytes after differentiation to adipocytes serve as excellent in vitro models and are useful tools in understanding the glucose metabolism. The traditional approaches adopted in pre adipocyte differentiation are lengthy exercises involving the usage of IBMX and Dexamethasone. Any effort to shorten the time of differentiation and quality expression of functional differentiation in 3T3 L1 cells in terms of enhanced Insulin sensitivity has an advantage in the drug discovery process. Thus, there is a need to develop a new effective method of differentiating the pre adipocytes to adipocytes and to use such methods for developing efficacious therapeutic molecules. We observed that a combination of Dexamethasone and Troglitazone generated differentiated adipocytes over fewer days as compared to the combination of IBMX and Dexamethasone which constitutes the standard protocol followed in our laboratory. The experiments conducted to compare the quality of differentiation yielded by various differentiating agents indicated that the lipid droplet accumulation increased by 112 % and the GLUT4 mediated glucose uptake by 137 % in cells differentiated with Troglitazone and Dexamethasone than in cells differentiated traditionally. The comparative studies conducted for evaluating efficient measurable glucose uptake by GOPOD assay, radioactive 3H-2-deoxy-D-glucose assay and by non-radioactive 6-NBDG (fluorescent analog of glucose) indicated that the non-radioactive method using 6-NBDG showed a higher signal to noise ratio than the conventional indirect glucose uptake method (GOPOD assay) and the radioactive 3H-2-deoxy-D-glucose uptake method. Differentiated 3T3 L1 cells when triggered with 2.5 ng/mL of Insulin showed 3.3 fold more glucose uptake in non-radioactive method over the radioactive 3H-2-deoxy-D-glucose uptake method. The results of this study have suggested that a combination of Dexamethasone and Troglitazone for 3T3 L1 cell differentiation helps in better quality differentiation over a short period of time with increased sensitivity to Insulin. The application of these findings for developing new methods of screening novel Insulin mimetics and for evaluating the immunological responses has been discussed.  相似文献   
40.
Fusarium species causing wilt diseases in different plants were characterised by comparing nonpathogenic and different pathogenic species using rDNA RFLP analysis. The ITS (internal transcribed spacer) region of 12 isolates belonging to the section Elegans, Laseola, Mortiella, Discolor, Gibbosum, Lateritium and Sporotrichiella were amplified by universal ITS primers (ITS-1 and ITS-4) using polymerase chain reaction (PCR). Amplified products, which ranged from 522 to 565 bp were obtained from all 12 Fusarium isolates. The amplified products were digested with seven restriction enzymes, and restriction fragment length polymorphism (RFLP) patterns were analysed. A dendrogram derived from PCR-RFLP analysis of the rDNA region divided the Fusarium isolates into three major groups. Assessment of molecular variability based on rDNA RFLP clearly indicated that Fusarium species are heterogeneous and most of the forma speciales have close evolutionary relationships.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号