首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4940篇
  免费   451篇
  国内免费   360篇
  2024年   10篇
  2023年   70篇
  2022年   163篇
  2021年   317篇
  2020年   179篇
  2019年   235篇
  2018年   248篇
  2017年   176篇
  2016年   237篇
  2015年   369篇
  2014年   356篇
  2013年   431篇
  2012年   431篇
  2011年   406篇
  2010年   237篇
  2009年   201篇
  2008年   258篇
  2007年   207篇
  2006年   170篇
  2005年   169篇
  2004年   118篇
  2003年   119篇
  2002年   89篇
  2001年   84篇
  2000年   73篇
  1999年   69篇
  1998年   42篇
  1997年   38篇
  1996年   37篇
  1995年   40篇
  1994年   28篇
  1993年   20篇
  1992年   24篇
  1991年   24篇
  1990年   17篇
  1989年   9篇
  1988年   11篇
  1987年   13篇
  1986年   7篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1959年   1篇
排序方式: 共有5751条查询结果,搜索用时 31 毫秒
981.
Xue L  Chen H  Meng YZ  Wang Y  Lu ZQ  Lu JX  Guan MX 《遗传》2011,33(9):911-918
线粒体DNA(mtDNA)突变是高血压发病的分子机制之一。已经报道的与原发性高血压相关的mtDNA突变包括:tRNAMet A4435G,tRNAMet/tRNAGln A4401G,tRNAIle A4263G,T4291C和A4295G突变。这些高血压相关的mtDNA突变改变了相应的线粒体tRNA的结构,导致线粒体tRNA的代谢障碍。而线粒体tRNAs的代谢缺陷则影响蛋白质合成,造成氧化磷酸化缺陷,降低ATP的合成,增加活性氧的产生。因此,线粒体的功能缺陷可能在高血压的发生发展中起一定的作用。mtDNA突变发病的组织特异性则可能与线粒体tRNAs的代谢以及核修饰基因相关。目前发现的这些高血压相关的mtDNA突变则应该作为今后高血压诊断的遗传风险因子。高血压相关的线粒体功能缺陷的深入研究也将进一步诠释母系遗传高血压的分子致病机制,为高血压的预防、控制和治疗提供依据。文章对高血压相关的mtDNA突变进行了综述。  相似文献   
982.
983.
984.
Song J  Feng H  Xu J  Zhao D  Shi J  Li Y  Deng G  Jiang Y  Li X  Zhu P  Guan Y  Bu Z  Kawaoka Y  Chen H 《Journal of virology》2011,85(5):2180-2188
During their circulation in nature, H5N1 avian influenza viruses (AIVs) have acquired the ability to kill their natural hosts, wild birds and ducks. The genetic determinants for this increased virulence are largely unknown. In this study, we compared two genetically similar H5N1 AIVs, A/duck/Hubei/49/05 (DK/49) and A/goose/Hubei/65/05 (GS/65), that are lethal for chickens but differ in their virulence levels in ducks. To explore the genetic basis for this difference in virulence, we generated a series of reassortants and mutants of these two viruses. The virulence of the reassortant bearing the PA gene from DK/49 in the GS/65 background increased 10(5)-fold relative to that of the GS/65 virus. Substitution of two amino acids, S224P and N383D, in PA contributed to the highly virulent phenotype. The amino acid 224P in PA increased the replication of the virus in duck embryo fibroblasts, and the amino acid 383D in PA increased the polymerase activity in duck embryo fibroblasts and delayed the accumulation of the PA and PB1 polymerase subunits in the nucleus of virus-infected cells. Our results provide strong evidence that the polymerase PA subunit is a virulence factor for H5N1 AIVs in ducks.  相似文献   
985.
986.
Studies in animal models have indicated that dietary isothiocyanates (ITCs) exhibit cancer preventive activities through carcinogen detoxification-dependent and -independent mechanisms. The carcinogen detoxification-independent mechanism of cancer prevention by ITCs has been attributed at least in part to their ability to induce apoptosis of transformed (initiated) cells (e.g. through suppression of IκB kinase and nuclear factor κB as well as other proposed mechanisms). In the current studies we show that ITC-induced apoptosis of oncogene-transformed cells involves thiol modification of DNA topoisomerase II (Top2) based on the following observations. 1) siRNA-mediated knockdown of Top2α in both SV40-transformed MEFs and Ras-transformed human mammary epithelial MCF-10A cells resulted in reduced ITC sensitivity. 2) ITCs, like some anticancer drugs and cancer-preventive dietary components, were shown to induce reversible Top2α cleavage complexes in vitro. 3) ITC-induced Top2α cleavage complexes were abolished by co-incubation with excess glutathione. In addition, proteomic analysis revealed that several cysteine residues on human Top2α were covalently modified by benzyl-ITC, suggesting that ITC-induced Top2α cleavage complexes may involve cysteine modification. Interestingly, consistent with the thiol modification mechanism for Top2α cleavage complex induction, the thiol-reactive selenocysteine, but not the non-thiol-reactive selenomethionine, was shown to induce Top2α cleavage complexes. In the aggregate, our results suggest that thiol modification of Top2α may contribute to apoptosis induction in transformed cells by ITCs.  相似文献   
987.
988.
The Attwater's prairie chicken (APC; Tympanuchus cupido attwateri Bendire, 1894) has been a federally listed endangered species since 1967. Several captive propagation programs consisting of small populations are being used to keep this species from extinction. Fecal samples were collected from APCs in April 2007 and again in August 2008 from 2 separate captive propagation facilities in Texas after clinical signs of coccidiosis were observed. One Eimeria species was observed (Eimeria attwateri), which we describe as a putative new species. Sporulated oocysts are ellipsoidal, 30.0 × 18.4 (27.4-31.3 × 16.0-22.4) μm. Oocysts have a smooth wall 0.7 μm thick and lack both a micropyle and oocyst residuum, but 1 ellipsoidal polar granule is present, 2.3 × 1.9 (2.1-2.4 × 1.7-2.0) μm. Sporocysts have a nipple-like Stieda body with a rounded opposite end and are 14.0 × 7.1 (10.2-16.8 × 6.0-9.2) μm. The sporocysts contain a sporocyst residuum usually consisting of 2-4 dispersed globules, and each sporozoite contains 2 large posterior spheroid refractile bodies 3.4 μm wide. Nucleotide sequence amplified from the 18S rDNA does not match any DNA sequence information for publicly available Eimeria species, and phylogenetic reconstructions place this species with other eimerians from Galliformes. The discovery of a potentially pathogenic species of Eimeria in captive APCs is of great importance, and managers should be aware of the potential devastating effect(s) this parasite could have on the APC conservation programs.  相似文献   
989.
Glucagon-like peptide-2 (GLP-2) is a nutrient-responsive neuropeptide that exerts diverse actions in the gastrointestinal tract, including enhancing mucosal cell survival and proliferation. GLP-2 stimulates mucosal growth in vivo with an increased rate of protein synthesis. However, it was unclear whether GLP-2 can directly stimulate protein synthesis. The objective was to test critically whether GLP-2 receptor (GLP-2R) activation directly stimulates protein synthesis through a PI 3-kinase-dependent Akt-mTOR signaling pathway. HEK 293 cells (transfected with human GLP-2R cDNA) were treated with human GLP-2 with/without pretreatment of PI 3-kinase inhibitor (LY-294002) or mTOR inhibitor (rapamycin). Results show that 1) GLP-2 specifically bound to GLP-2R overexpressed in the HEK cells with K(a) = 0.22 nM and B(max) = 321 fmol/μg protein; 2) GLP-2-stimulated protein synthesis was dependent on the amount of GLP-2R cDNA and the dosage of GLP-2 and reached the plateau among 0.2-2 nM GLP-2; 3) GLP-2-stimulated protein synthesis was abolished by the PI 3-kinase inhibitor and mTOR inhibitor; and 4) GLP-2-mediated stimulation of phosphorylation on Akt and mTOR was dependent on the amount of GLP-2R cDNA transfected and the dosage of GLP-2. In addition, GLP-2-mediated action and signaling in regulation of protein synthesis were confirmed in mouse hippocampal neurons (expressing native GLP-2R). GLP-2 directly stimulated protein synthesis of primary cultured neurons in dosage-dependent, PI 3-kinase-dependent, and rapamycin-sensitive manners, which linked with activation of Akt-mTOR signaling pathway as well. We conclude that GLP-2R activation directly stimulates protein synthesis by activating the PI 3-kinase-dependent Akt-mTOR signaling pathway. GLP-2-stimulated protein synthesis may be physiologically relevant to maintaining neuronal long-term potentiation and providing secondary mediators (namely neuropeptides or growth factors).  相似文献   
990.
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. To date, the molecular mechanisms of DN remain largely unclear. The present study aimed to identify and characterize novel proteins involved in the development of DN by a proteomic approach. Proteomic analysis revealed that 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase 2 (HMGCS2), the key enzyme in ketogenesis, was increased fourfold in the kidneys of type 2 diabetic db/db mice. Consistently, the activity of HMGCS2 in kidneys and 24-h urinary excretion of the ketone body β-hydroxybutyrate (β-HB) were significantly increased in db/db mice. Immunohistochemistry, immunofluorescence, and real-time PCR studies further demonstrated that HMGCS2 was highly expressed in renal glomeruli of db/db mice, with weak expression in the kidneys of control mice. Because filtered ketone bodies are mainly reabsorbed in the proximal tubules, we used RPTC cells, a rat proximal tubule cell line, to examine the effect of the increased level of ketone bodies. Treating cultured RPTC cells with 1 mM β-HB significantly induced transforming growth factor-β1 expression, with a marked increase in collagen I expression. β-HB treatment also resulted in a marked increase in vimentin protein expression and a significant reduction in E-cadherin protein levels, suggesting an enhanced epithelial-to-mesenchymal transition in RPTCs. Collectively, these findings demonstrate that diabetic kidneys exhibit excess ketogenic activity resulting from increased HMGCS2 expression. Enhanced ketone body production in the diabetic kidney may represent a novel mechanism involved in the pathogenesis of DN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号