首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2499篇
  免费   269篇
  国内免费   1篇
  2023年   17篇
  2022年   26篇
  2021年   69篇
  2020年   53篇
  2019年   44篇
  2018年   54篇
  2017年   49篇
  2016年   72篇
  2015年   156篇
  2014年   147篇
  2013年   175篇
  2012年   219篇
  2011年   213篇
  2010年   100篇
  2009年   102篇
  2008年   145篇
  2007年   152篇
  2006年   139篇
  2005年   127篇
  2004年   97篇
  2003年   89篇
  2002年   79篇
  2001年   26篇
  2000年   24篇
  1999年   36篇
  1998年   20篇
  1997年   15篇
  1996年   13篇
  1994年   10篇
  1992年   9篇
  1991年   16篇
  1990年   13篇
  1989年   11篇
  1988年   18篇
  1987年   10篇
  1985年   8篇
  1984年   11篇
  1983年   17篇
  1982年   8篇
  1981年   11篇
  1978年   10篇
  1977年   14篇
  1975年   7篇
  1974年   12篇
  1973年   12篇
  1972年   8篇
  1971年   10篇
  1970年   9篇
  1969年   8篇
  1968年   8篇
排序方式: 共有2769条查询结果,搜索用时 15 毫秒
791.
Clinical studies have suggested that Δ9-tetrahydrocannabinol (THC) may be a clinically useful antiemetic. However, the ability of THC to decrease experimentally induced emesis in animals has not been extensively studied. The present study compares the antiemetic effects of THC with chlorpromazine on apomorphine-induced emesis in the dog. THC, chlorpromazine, THC vehicle, or saline was administered i.v. 30 min prior to an i.v. infusion of apomorphine; apomorphine was infused until emesis occurred. THC had no effect on the dose of apomorphine required to produce emesis, whereas chlorpromazine increased this dose approximately 75%. Moreover, THC nearly doubled the time from the first to the last occurrence of emesis relative to control values, while chlorpromazine greatly reduced this value. In addition, THC had no effect on the stimulation of pulse rate produced by apomorphine; chlorpromazine potentiated this effect, probably through indirect mechanisms. These findings demonstrate that THC is not an antagonist of the emetic agent apomorphine in the dog.  相似文献   
792.
In this work, we evaluate the in vitro response of endothelial cells (EC) to variation in precisely-defined, micrometer to sub-micrometer scale topography on two different substrate materials, titanium (Ti) and silicon (Si). Both substrates possess identically-patterned surfaces composed of microfabricated, groove-based gratings with groove widths ranging from 0.5 to 50 µm, grating pitch twice the groove width, and groove depth of 1.3 µm. These specific materials are chosen due to their relevance for implantable microdevice applications, while grating-based patterns are chosen for the potential they afford for inducing elongated and aligned cellular morphologies reminiscent of the native endothelium. Using EA926 cells, a human EC variant, we show significant improvement in cellular adhesion, proliferation, morphology, and function with decreasing feature size on patterned Ti substrates. Moreover, we show similar trending on patterned Si substrates, albeit to a lesser extent than on comparably patterned Ti substrates. Collectively, these results suggest promise for sub-micrometer topographic patterning in general, and sub-micrometer patterning of Ti specifically, as a means for enhancing endothelialization and neovascularisation for novel implantable microdevice applications.  相似文献   
793.
794.
The propensity for chronic wounds in humans increases with ageing, disease conditions such as diabetes and impaired cardiovascular function, and unrelieved pressure due to immobility. Animal models have been developed that attempt to mimic these conditions for the purpose of furthering our understanding of the complexity of chronic wounds. The model described herein is a rat ischemic skin flap model that permits a prolonged reduction of blood flow resulting in wounds that become ischemic and resemble a chronic wound phenotype (reduced vascularization, increased inflammation and delayed wound closure). It consists of a bipedicled dorsal flap with 2 ischemic wounds placed centrally and 2 non-ischemic wounds lateral to the flap as controls. A novel addition to this ischemic skin flap model is the placement of a silicone sheet beneath the flap that functions as a barrier and a splint to prevent revascularization and reduce contraction as the wounds heal. Despite the debate of using rats for wound healing studies due to their quite distinct anatomic and physiologic differences compared to humans (i.e., the presence of a panniculus carnosus muscle, short life-span, increased number of hair follicles, and their ability to heal infected wounds) the modifications employed in this model make it a valuable alternative to previously developed ischemic skin flap models.  相似文献   
795.
796.
Cerebellar symptoms significantly diminish quality of life in patients with multiple sclerosis (MS). We previously showed that sodium channel Nav1.8, although normally restricted to peripheral somatosensory neurons, is upregulated in the cerebellum in MS, and that Nav1.8 expression is linked to ataxia and MS-like symptoms in mice. Furthermore, intracerebroventricular administration of the Nav1.8 blocker A-803467 temporarily reversed electrophysiological and behavioral manifestations of disease in a mouse MS model; unfortunately A-803467 is not orally bioavailable, diminishing the potential for translation to human patients. In the present study, we assessed the effect of per os (p.o.) dosing of a new orally bioavailable Nav1.8-selective blocker, PF-01247324, in transgenic mice expressing Nav1.8 in Purkinje neurons, and in wildtype mice in the experimental autoimmune encephalomyelitis (EAE) model. PF-01247324 was administered by oral gavage at 1000 mg/kg; control groups received an equal volume of vehicle. Behavioral assays of motor coordination, grip strength, and ataxia were performed. We observed significant improvements in motor coordination and cerebellar-like symptoms in mice that received PF-01247324 compared to control littermates that received vehicle. These preclinical proof-of-concept data suggest that PF-01247324, its derivatives, or other Nav1.8-selective blockers merit further study for providing symptomatic therapy for cerebellar dysfunction in MS and related disorders.  相似文献   
797.
Inflammatory demyelinating lesions of the central nervous system are a common feature of both neuromyelitis optica and multiple sclerosis. Despite this similarity, it is evident clinically that the accumulation of disability in patients with neuromyelitis optica is relapse related and that a progressive phase is very uncommon. This poses the question whether there is any pathological evidence of disease activity or neurodegeneration in neuromyelitis optica between relapses. To investigate this we conducted a longitudinal advanced MRI study of the brain and spinal cord in neuromyelitis optica patients, comparing to patients with multiple sclerosis and controls. We found both cross-sectional and longitudinal evidence of diffusely distributed neurodegenerative surrogates in the multiple sclerosis group (including thalamic atrophy, cervical cord atrophy and progressive widespread diffusion and myelin water imaging abnormalities in the normal appearing white matter) but not in those with neuromyelitis optica, where localised abnormalities in the optic radiations of those with severe visual impairment were noted. In addition, between relapses, there were no new silent brain lesions in the neuromyelitis optica group. These findings indicate that global central nervous system neurodegeneration is not a feature of neuromyelitis optica. The work also questions the theory that neurodegeneration in multiple sclerosis is a chronic sequela to prior inflammatory and demyelinating pathology, as this has not been found to be the case in neuromyelitis optica where the lesions are often more destructive.  相似文献   
798.
799.
Despite resection and adjuvant therapy, the 5-year survival for patients with Glioblastoma multiforme (GBM) is less than 10%. This poor outcome is largely attributed to rapid tumor growth and early dispersal of cells, factors that contribute to a high recurrence rate and poor prognosis. An understanding of the cellular and molecular machinery that drive growth and dispersal is essential if we are to impact long-term survival. Our previous studies utilizing a series of immortalized GBM cell lines established a functional causation between activation of fibronectin matrix assembly (FNMA), increased tumor cohesion, and decreased dispersal. Activation of FNMA was accomplished by treatment with Dexamethasone (Dex), a drug routinely used to treat brain tumor related edema. Here, we utilize a broad range of qualitative and quantitative assays and the use of a human GBM tissue microarray and freshly-isolated primary human GBM cells grown both as conventional 2D cultures and as 3D spheroids to explore the role of Dex and FNMA in modulating various parameters that can significantly influence tumor cell dispersal. We show that the expression and processing of fibronectin in a human GBM tissue-microarray is variable, with 90% of tumors displaying some abnormality or lack in capacity to secrete fibronectin or assemble it into a matrix. We also show that low-passage primary GBM cells vary in their capacity for FNMA and that Dex treatment reactivates this process. Activation of FNMA effectively “glues” cells together and prevents cells from detaching from the primary mass. Dex treatment also significantly increases the strength of cell-ECM adhesion and decreases motility. The combination of increased cohesion and decreased motility discourages in vitro and ex vivo dispersal. By increasing cell-cell cohesion, Dex also decreases growth rate of 3D spheroids. These effects could all be reversed by an inhibitor of FNMA and by the glucocorticoid receptor antagonist, RU-486. Our results describe a new role for Dex as a suppressor of GBM dispersal and growth.  相似文献   
800.

Background

Studies of cost-effective disease prevention have typically focused on the tradeoff between the cost of disease transmission and the cost of applying control measures. We present a novel approach that also accounts for the cost of social disruptions resulting from the spread of disease. These disruptions, which we call social response, can include heightened anxiety, strain on healthcare infrastructure, economic losses, or violence.

Methodology

The spread of disease and social response are simulated under several different intervention strategies. The modeled social response depends upon the perceived risk of the disease, the extent of disease spread, and the media involvement. Using Monte Carlo simulation, we estimate the total number of infections and total social response for each strategy. We then identify the strategy that minimizes the expected total cost of the disease, which includes the cost of the disease itself, the cost of control measures, and the cost of social response.

Conclusions

The model-based simulations suggest that the least-cost disease control strategy depends upon the perceived risk of the disease, as well as media intervention. The most cost-effective solution for diseases with low perceived risk was to implement moderate control measures. For diseases with higher perceived severity, such as SARS or Ebola, the most cost-effective strategy shifted toward intervening earlier in the outbreak, with greater resources. When intervention elicited increased media involvement, it remained important to control high severity diseases quickly. For moderate severity diseases, however, it became most cost-effective to implement no intervention and allow the disease to run its course. Our simulation results imply that, when diseases are perceived as severe, the costs of social response have a significant influence on selecting the most cost-effective strategy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号