首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2534篇
  免费   270篇
  国内免费   1篇
  2023年   17篇
  2022年   30篇
  2021年   69篇
  2020年   53篇
  2019年   44篇
  2018年   56篇
  2017年   49篇
  2016年   74篇
  2015年   156篇
  2014年   148篇
  2013年   176篇
  2012年   221篇
  2011年   213篇
  2010年   103篇
  2009年   103篇
  2008年   146篇
  2007年   152篇
  2006年   139篇
  2005年   128篇
  2004年   98篇
  2003年   90篇
  2002年   79篇
  2001年   26篇
  2000年   24篇
  1999年   36篇
  1998年   26篇
  1997年   18篇
  1996年   15篇
  1995年   8篇
  1994年   11篇
  1992年   9篇
  1991年   17篇
  1990年   14篇
  1989年   11篇
  1988年   18篇
  1987年   10篇
  1985年   8篇
  1984年   11篇
  1983年   17篇
  1982年   8篇
  1981年   11篇
  1978年   10篇
  1977年   14篇
  1974年   12篇
  1973年   12篇
  1972年   8篇
  1971年   10篇
  1970年   9篇
  1969年   8篇
  1968年   8篇
排序方式: 共有2805条查询结果,搜索用时 171 毫秒
931.
Copper and Zinc Nutritional Issues for Agricultural Animal Production   总被引:1,自引:0,他引:1  

Livestock have presented unique requirements and toxicity issues depending on the species for the various concentrations of Cu and Zn and their interactions with other nutrients especially Fe, Se, Mo, and S. Soil concentrations of these elements and their availability to crops influence the health of the crop and the amount found in vegetative tissues and seeds. Hence, many livestock issues are a result of the soils in the area where production is occurring (Loneragan et al. 1981). While water can provide minerals to animals, the amount consumed and availability are highly variable. Many discoveries about Cu were a result of low Cu concentrations and its availability due to interactions with other nutrients in the soils. Anemia, bone disorders, cardiovascular abnormalities, defective wool and hair, and infertility are signs/symptoms of Cu deficiency. Toxicity due to excess Cu is more likely to occur in sheep than other farm species. Swine are tolerant of high concentrations of dietary Cu, and it is often used as a growth stimulant in production. There are many species and physiological stages where the animal’s Cu requirement is not known. Grazing animals can exhibit Zn deficiency when soils and forages contain limited concentrations of Zn. Pastures have been observed to be Zn-deficient in many parts of the world. However, non-ruminant animals usually receive adequate Zn when fed corn and soybean meal diets if there is not excessive Ca and Fe in their diets, but this is not true for rapidly growing young animals. Characteristics of a Zn deficiency include loss of appetite, reduced growth and reproduction, and impaired health of bone and skin tissues.

  相似文献   
932.
Molecular doping is a powerful method to fine‐tune the thermoelectric properties of organic semiconductors, in particular to impart the requisite electrical conductivity. The incorporation of molecular dopants can, however, perturb the microstructure of semicrystalline organic semiconductors, which complicates the development of a detailed understanding of structure–property relationships. To better understand how the doping pathway and the resulting dopant counterion influence the thermoelectric performance and transport properties, a new dimer dopant, (N‐DMBI)2, is developed. Subsequently, FBDPPV is then n‐doped with dimer dopants (N‐DMBI)2, (RuCp*mes)2, and the hydride‐donor dopant N‐DMBI‐H. By comparing the UV–vis–NIR absorption spectra and morphological characteristics of the doped polymers, it is found that not only the doping mechanism, but also the shape of the counterion strongly influence the thermoelectric properties and transport characteristics. (N‐DMBI)2, which is a direct electron‐donating dopant with a comparatively small, relatively planar counterion, gives the best power factor among the three systems studied here. Additionally, temperature‐dependent conductivity and Seebeck coefficient measurements differ between the three dopants with (N‐DMBI)2 yielding the best thermoelectric properties. The results of this study of dopant effects on thermoelectric properties provide insight into guidelines for future organic thermoelectrics.  相似文献   
933.
Light pollution is a global disturbance with resounding impacts on a wide variety of organisms, but our understanding of these impacts is restricted to relatively few higher vertebrate species. We tested the direct effects of light pollution on herbivore performance as well as indirect effects mediated by host plant quality. We found that artificial light from streetlights alters plant toughness. Additionally, we found evidence of both direct and indirect effects of light pollution on the performance of an herbivorous insect, which indicates that streetlights can have cascading impacts on multiple trophic levels. Our novel findings suggest that light pollution can alter plant-insect interactions and thus may have important community-wide consequences.  相似文献   
934.
935.
936.
In Neurospora, genes not paired during meiosis are targeted by meiotic silencing by unpaired DNA (MSUD). Here, our bimolecular fluorescence complementation (BiFC) study suggests that RNA-directed RNA polymerase, Dicer, Argonaute, and others form a silencing complex in the perinuclear region, with intimate interactions among the majority of them. We have also shown that SAD-2 is likely the anchor for this assembly.  相似文献   
937.
Tumor cells rely on elevated glucose consumption and metabolism for survival and proliferation. Glucose transporters mediating glucose entry are key proximal rate-limiting checkpoints. Unlike GLUT1 that is highly expressed in cancer and more ubiquitously expressed in normal tissues, GLUT4 exhibits more limited normal expression profiles. We have previously determined that insulin-responsive GLUT4 is constitutively localized on the plasma membrane of myeloma cells. Consequently, suppression of GLUT4 or inhibition of glucose transport with the HIV protease inhibitor ritonavir elicited growth arrest and/or apoptosis in multiple myeloma. GLUT4 inhibition also caused sensitization to metformin in multiple myeloma and chronic lymphocytic leukemia and a number of solid tumors suggesting the broader therapeutic utility of targeting GLUT4. This study sought to identify selective inhibitors of GLUT4 to develop a more potent cancer chemotherapeutic with fewer potential off-target effects. Recently, the crystal structure of GLUT1 in an inward open conformation was reported. Although this is an important achievement, a full understanding of the structural biology of facilitative glucose transport remains elusive. To date, there is no three-dimensional structure for GLUT4. We have generated a homology model for GLUT4 that we utilized to screen for drug-like compounds from a library of 18 million compounds. Despite 68% homology between GLUT1 and GLUT4, our virtual screen identified two potent compounds that were shown to target GLUT4 preferentially over GLUT1 and block glucose transport. Our results strongly bolster the utility of developing GLUT4-selective inhibitors as anti-cancer therapeutics.  相似文献   
938.
The zinc transporter ZnT2 (SLC30A2) imports zinc into vesicles in secreting mammary epithelial cells (MECs) and is critical for zinc efflux into milk during lactation. Recent studies show that ZnT2 also imports zinc into mitochondria and is expressed in the non-lactating mammary gland and non-secreting MECs, highlighting the importance of ZnT2 in general mammary gland biology. In this study we used nulliparous and lactating ZnT2-null mice and characterized the consequences on mammary gland development, function during lactation, and milk composition. We found that ZnT2 was primarily expressed in MECs and to a limited extent in macrophages in the nulliparous mammary gland and loss of ZnT2 impaired mammary expansion during development. Secondly, we found that lactating ZnT2-null mice had substantial defects in mammary gland architecture and MEC function during secretion, including fewer, condensed and disorganized alveoli, impaired Stat5 activation, and unpolarized MECs. Loss of ZnT2 led to reduced milk volume and milk containing less protein, fat, and lactose compared with wild-type littermates, implicating ZnT2 in the regulation of mammary differentiation and optimal milk production during lactation. Together, these results demonstrate that ZnT2-mediated zinc transport is critical for mammary gland function, suggesting that defects in ZnT2 not only reduce milk zinc concentration but may compromise breast health and increase the risk for lactation insufficiency in lactating women.  相似文献   
939.
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号