首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3270篇
  免费   330篇
  国内免费   1篇
  3601篇
  2023年   34篇
  2022年   47篇
  2021年   97篇
  2020年   66篇
  2019年   58篇
  2018年   72篇
  2017年   73篇
  2016年   89篇
  2015年   203篇
  2014年   195篇
  2013年   218篇
  2012年   282篇
  2011年   276篇
  2010年   142篇
  2009年   121篇
  2008年   173篇
  2007年   188篇
  2006年   167篇
  2005年   158篇
  2004年   114篇
  2003年   120篇
  2002年   103篇
  2001年   51篇
  2000年   44篇
  1999年   49篇
  1998年   29篇
  1997年   15篇
  1996年   19篇
  1994年   13篇
  1992年   15篇
  1991年   18篇
  1990年   21篇
  1989年   19篇
  1988年   22篇
  1987年   15篇
  1986年   10篇
  1985年   13篇
  1984年   13篇
  1983年   21篇
  1982年   10篇
  1981年   12篇
  1979年   10篇
  1978年   13篇
  1977年   15篇
  1975年   9篇
  1974年   16篇
  1973年   15篇
  1972年   10篇
  1971年   10篇
  1970年   10篇
排序方式: 共有3601条查询结果,搜索用时 15 毫秒
81.
Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.  相似文献   
82.
We investigated the genetic diversity of symbiotic bacteria associated with two newly discovered species of Osedax from Monterey Canyon, CA, at 1,017-m (Osedax Monterey Bay sp. 3 “rosy” [Osedax sp. MB3]) and 381-m (Osedax Monterey Bay sp. 4 “yellow collar”) depths. Quantitative PCR and clone libraries of 16S rRNA gene sequences identified differences in the compositions and abundances of bacterial phylotypes associated with the newly discovered host species and permitted comparisons between adult Osedax frankpressi and juveniles that had recently colonized whalebones implanted at 2,891 m. The newly discovered Osedax species hosted Oceanospirillales symbionts that are related to Gammaproteobacteria associated with the previously described O. frankpressi and Osedax rubiplumus (S. K. Goffredi, V. J. Orphan, G. W. Rouse, L. Jahnke, T. Embaye, K. Turk, R. Lee, and R. C. Vrijenhoek, Environ. Microbiol. 7:1369-1378, 2005). In addition, Osedax sp. MB3 hosts a diverse and abundant population of additional bacteria dominated by Epsilonproteobacteria. Ultrastructural analysis of symbiont-bearing root tissues verified the enhanced microbial diversity of Osedax sp. MB3. Root tissues from the newly described host species and O. frankpressi all exhibited collagenolytic enzyme activity, which covaried positively with the abundance of symbiont DNA and negatively with mean adult size of the host species. Members of this unusual genus of bone-eating worms may form variable associations with symbiotic bacteria that allow for the observed differences in colonization and success in whale fall environments throughout the world's oceans.  相似文献   
83.
84.
Skeletal muscles produce and contribute to circulating levels of IL-6 during exercise. However, when core temperature is reduced, the response is attenuated. Therefore, we hypothesized that hyperthermia may be an important and independent stimulus for muscle IL-6. In cultured C2C12 myotubes, hyperthermia (42°C) increased IL-6 gene expression 14-fold after 1 h and 35-fold after 5 h of 37°C recovery; whereas exposure to 41°C resulted in a 2.6-fold elevation at 1 h. IL-6 protein was secreted and significantly elevated in the cell supernatant. Similar but reduced responses to heat were seen in C2C12 myoblasts. Isolated soleus muscles from mice, exposed ex vivo to 41°C for 1 h, yielded similar IL-6 gene responses (>3-fold) but without a significant effect on protein release. When whole animals were exposed to passive hyperthermia, such that core temperature increased to 42.4°C, IL-6 mRNA in soleus increased 5.4-fold compared with time matched controls. Interestingly, TNF-α gene expression was routinely suppressed at all levels of hyperthermia (40.5-42°C) in the isolated models, but TNF-α was elevated (4.2-fold) in the soleus taken from intact mice exposed, in vivo, to hyperthermia. Muscle HSP72 mRNA increased as a function of the level of hyperthermia, and IL-6 mRNA responses increased proportionally with HSP72. In cultured C2C12 myotubes, when heat shock factor was pharmacologically blocked with KNK437, both HSP72 and IL-6 mRNA elevations, induced by heat, were suppressed. These findings implicate skeletal muscle as a "heat stress sensor" at physiologically relevant hyperthermia, responding with a programmed cytokine expression pattern characterized by elevated IL-6.  相似文献   
85.
Serous epithelial ovarian cancer (EOC) patients often succumb to aggressive metastatic disease, yet little is known about the behavior and genetics of ovarian cancer metastasis. Here, we aim to understand how omental metastases differ from primary tumors and how these differences may influence chemotherapy. We analyzed the miRNA expression profiles of primary EOC tumors and their respective omental metastases from 9 patients using miRNA Taqman qPCR arrays. We find 17 miRNAs with differential expression in omental lesions compared to primary tumors. miR-21, miR-150, and miR-146a have low expression in most primary tumors with significantly increased expression in omental lesions, with concomitant decreased expression of predicted mRNA targets based on mRNA expression. We find that miR-150 and miR-146a mediate spheroid size. Both miR-146a and miR-150 increase the number of residual surviving cells by 2–4 fold when challenged with lethal cisplatin concentrations. These observations suggest that at least two of the miRNAs, miR-146a and miR-150, up-regulated in omental lesions, stimulate survival and increase drug tolerance. Our observations suggest that cancer cells in omental tumors express key miRNAs differently than primary tumors, and that at least some of these microRNAs may be critical regulators of the emergence of drug resistant disease.  相似文献   
86.
Ley/H: an endothelial-selective, cytokine-inducible, angiogenic mediator   总被引:5,自引:0,他引:5  
Endothelial cells (ECs) are key participants in angiogenic processes that characterize tumor growth, wound repair, and inflammatory diseases, such as human rheumatoid arthritis (RA). We and others have shown that EC molecules, such as soluble E-selectin, mediate angiogenesis. Here we describe an EC molecule, Lewisy-6/H-5-2 glycoconjugate (Ley/H), that shares some structural features with the soluble E-selectin ligand, sialyl Lewisx (sialyl Lex). One of the main previously recognized functions of Lewisy is as a blood group glycoconjugate. Here we show that Ley/H is rapidly cytokine inducible, up-regulated in RA synovial tissue, where it is cell-bound, and up-regulated in the soluble form in angiogenic RA compared with nonangiogenic osteoarthritic joint fluid. Soluble Ley/H also has a novel function, for it is a potent angiogenic mediator in both in vitro and in vivo bioassays. These results suggest a novel paradigm of soluble blood group Ags as mediators of angiogenic responses and suggest new targets for therapy of diseases, such as RA, that are characterized by persistent neovascularization.  相似文献   
87.
The relative decomposability of corn (Zea mays L.) residues from insect (Bt)-protected hybrids and conventional hybrids cultivated under insect pressure was investigated in two studies. Above-ground biomass, residue macromolecular composition, and stalk physical strength were also measured. In the first decomposition study, chopped residues (stalks and leaves) were used from a corn rootworm-protected (Cry3Bb1) hybrid and its non-Bt near isoline that were grown in replicated plots infested with corn rootworms (Diabrotica spp.). In the second study, residue (intact stalk sections) was used from three European corn borer (ECB, Ostrinia nubilalis Hübner)-resistant (Cry1Ab) hybrids representing different seed manufacturer/maturity date series, their non-Bt near isolines, two Cry3Bb1-protected isolines, and three additional conventional hybrids, all cultivated in replicated plots under conditions of elevated ECB pressure. In both studies, insect-resistant residues decomposed at rates similar to their non-protected near isolines. No evidence was found that insect-protected hybrids produced more above-ground biomass or had distinct residue composition. While some measures of mechanical stalk strength indicated that ECB-damaged stalks were not as stiff as protected stalks, these physical differences did not translate into differences in residue decomposition. We conclude that while individual hybrids may vary in their production of biomass, residue composition or residue decomposability, these characteristics do not systematically vary with the presence of the Bt gene conferring insect resistance, even under conditions of insect pressure.  相似文献   
88.
3-[6-(2-Dimethylamino-1-imidazol-1-yl-butyl)-naphthalen-2-yloxy]-2,2-dimethyl-propionic acid and analogs were designed and synthesized as highly potent and selective CYP26 inhibitors, serving as retinoic acid metabolic blocking agents (RAMBAs), with demonstrated in vivo efficacy to increase the half-life of exogenous atRA.  相似文献   
89.
The effect of diabetes mellitus on serum cholesterol and aortic microsomal prostanoid synthesis was studied in cholesterol fed male Lewis rats. Normal, diabetic and diabetic rats treated with pancreatic islets were divided into three diet subgroups, control diet, control +2% cholesterol for 8 weeks and control +2% cholesterol diet for 16 weeks. Serum glucose levels were elevated three-fold in the diabetic group compared to normal. Treatment with islets restored serum glucose to normal levels in diabetic rats. The 2% cholesterol diet did not significantly alter serum glucose levels in any of the groups. Body weights in the diabetic group were significantly lower than normal or diabetic rats treated with islets. Feeding 2% cholesterol for 16 weeks significantly increased weight in normal and islet treated diabetic rats but not in the diabetic group. Aortic microsomal prostanoid synthesis was similar in all experimental groups with 6-keto-PGF1 alpha (PGI2 metabolite) being the major product synthesized in all groups. Aortic microsomal prostanoid levels were not altered by the 2% cholesterol diet. Serum cholesterol levels increased 14-fold in the diabetic group which returned to the normal level in the diabetic animals treated with islets. These data show that diabetes does not alter aortic microsomal prostanoid levels in the rat. However, diabetes significantly increased serum cholesterol levels which were reversed by islet transplantation.  相似文献   
90.
Ecological and evolutionary processes are affected by forces acting at both local and regional scales, yet our understanding of how these scales interact has remained limited. These processes are fundamentally linked through individuals that develop as juveniles in one environment and then either remain in the natal habitat or disperse to new environments. Empirical studies in a diverse range of organisms have demonstrated that the conditions experienced in the natal habitat can have profound effects on the adult phenotype. This environmentally induced phenotypic variation can in turn affect the probability that an individual will disperse to a new environment and the ecological and evolutionary impact of that individual in the new environment. We synthesize the literature on this process and propose a framework for exploring the linkage between local developmental environment and dispersal. We then discuss the ecological and evolutionary implications of dispersal asymmetries generated by the effects of natal habitat conditions on individual phenotypes. Our review indicates that the influence of natal habitat conditions on adult phenotypes may be a highly general mechanism affecting the flow of individuals between populations. The wealth of information already gathered on how local conditions affect adult phenotype can and should be integrated into the study of dispersal as a critical force in ecology and evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号