首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2510篇
  免费   269篇
  国内免费   1篇
  2023年   17篇
  2022年   26篇
  2021年   69篇
  2020年   53篇
  2019年   44篇
  2018年   54篇
  2017年   49篇
  2016年   72篇
  2015年   157篇
  2014年   147篇
  2013年   175篇
  2012年   219篇
  2011年   213篇
  2010年   100篇
  2009年   103篇
  2008年   148篇
  2007年   153篇
  2006年   140篇
  2005年   127篇
  2004年   97篇
  2003年   89篇
  2002年   79篇
  2001年   26篇
  2000年   24篇
  1999年   37篇
  1998年   21篇
  1997年   15篇
  1996年   13篇
  1994年   11篇
  1992年   9篇
  1991年   17篇
  1990年   13篇
  1989年   11篇
  1988年   18篇
  1987年   10篇
  1985年   8篇
  1984年   11篇
  1983年   17篇
  1982年   8篇
  1981年   11篇
  1978年   10篇
  1977年   14篇
  1975年   7篇
  1974年   12篇
  1973年   12篇
  1972年   8篇
  1971年   10篇
  1970年   9篇
  1969年   8篇
  1968年   8篇
排序方式: 共有2780条查询结果,搜索用时 390 毫秒
121.
Luotonin A, a naturally occurring pyrroloquinazolinoquinoline alkaloid, has been previously demonstrated to be a topoisomerase I poison. A number of luotonin A derivatives have now been prepared through the condensation of anthranilic acid derivatives and 1,2-dihydropyrrolo[3,4-b]quinoline-3-one in the presence of phosphorus oxychloride. When dichloromethane was used as solvent the reaction proceeded to a single product. In contrast when the reaction was carried out in tetrahydrofuran or in phosphorus oxychloride, an additional isomeric product was obtained. The luotonin A analogues were evaluated for their ability to effect stabilization of the covalent binary complex formed between human topoisomerase I and DNA, and for cytotoxicity toward a yeast strain expressing the human topoisomerase I.  相似文献   
122.
Some amino acid substitutions in phage P22 coat protein cause a temperature-sensitive folding (tsf) phenotype. In vivo, these tsf amino acid substitutions cause coat protein to aggregate and form intracellular inclusion bodies when folded at high temperatures, but at low temperatures the proteins fold properly. Here the effects of tsf amino acid substitutions on folding and unfolding kinetics and the stability of coat protein in vitro have been investigated to determine how the substitutions change the ability of coat protein to fold properly. The equilibrium unfolding transitions of the tsf variants were best fit to a three-state model, N if I if U, where all species concerned were monomeric, a result confirmed by velocity sedimentation analytical ultracentrifugation. The primary effect of the tsf amino acid substitutions on the equilibrium unfolding pathway was to decrease the stability (DeltaG) and the solvent accessibility (m-value) of the N if I transition. The kinetics of folding and unfolding of the tsf coat proteins were investigated using tryptophan fluorescence and circular dichroism (CD) at 222 nm. The tsf amino acid substitutions increased the rate of unfolding by 8-14-fold, with little effect on the rate of folding, when monitored by tryptophan fluorescence. In contrast, when folding or unfolding reactions were monitored by CD, the reactions were too fast to be observed. The tsf coat proteins are natural substrates for the molecular chaperones, GroEL/S. When native tsf coat protein monomers were incubated with GroEL, they bound efficiently, indicating that a folding intermediate was significantly populated even without denaturant. Thus, the tsf coat proteins aggregate in vivo because of an increased propensity to populate this unfolding intermediate.  相似文献   
123.
We address the importance of natural selection in the origin and maintenance of rapid protein folding by experimentally characterizing the folding kinetics of two de novo designed proteins, NC3-NCAP and ENH-FSM1. These 51 residue proteins, which adopt the helix-turn-helix homeodomain fold, share as few as 12 residues in common with their most closely related natural analog. Despite the replacement of up to 3/4 of their residues by a computer algorithm optimizing only thermodynamic properties, the designed proteins fold as fast or faster than the 35,000 s(-1) observed for the closest natural analog. Thus these de novo designed proteins, which were produced in the complete absence of selective pressures or design constraints explicitly aimed at ensuring rapid folding, are among the most rapidly folding proteins reported to date.  相似文献   
124.
Replication of hepatitis C virus (HCV) RNA in virus-infected cells is believed to be catalyzed by viral replicase complexes (RCs), which may consist of various virally encoded nonstructural proteins and host factors. In this study, we characterized the RC activity of a crude membrane fraction isolated from HCV subgenomic replicon cells. The RC preparation was able to use endogenous replicon RNA as a template to synthesize both single-stranded (ss) and double-stranded (ds) RNA products. Divalent cations (Mg2+ and Mn2+) showed different effects on RNA synthesis. Mg2+ ions stimulated the synthesis of ss RNA but had little effect on the synthesis of ds RNA. In contrast, Mn2+ ions enhanced primarily the synthesis of ds RNA. Interestingly, ss RNA could be synthesized under certain conditions in the absence of ds RNA, and vice versa, suggesting that the ss and ds RNA were derived either from different forms of replicative intermediates or from different RCs. Pulse-chase analysis showed that radioactivity incorporated into the ss RNA was chased into the ds RNA and other larger RNA species. This observation indicated that the newly synthesized ss RNA could serve as a template for a further round of RNA synthesis. Finally, 3' deoxyribonucleoside triphosphates were able to inhibit RNA synthesis in this cell-free system, presumably through chain termination, with 3' dGTP having the highest potency. Establishment of the replicase assay will facilitate the identification and evaluation of potential inhibitors that would act against the entire RC of HCV.  相似文献   
125.
We present the first solution structure of the HIV-1 protease monomer spanning the region Phe1-Ala95 (PR1-95). Except for the terminal regions (residues 1-10 and 91-95) that are disordered, the tertiary fold of the remainder of the protease is essentially identical to that of the individual subunit of the dimer. In the monomer, the side chains of buried residues stabilizing the active site interface in the dimer, such as Asp25, Asp29, and Arg87, are now exposed to solvent. The flap dynamics in the monomer are similar to that of the free protease dimer. We also show that the protease domain of an optimized precursor flanked by 56 amino acids of the N-terminal transframe region is predominantly monomeric, exhibiting a tertiary fold that is quite similar to that of PR1-95 structure. This explains the very low catalytic activity observed for the protease prior to its maturation at its N terminus as compared with the mature protease, which is an active stable dimer under identical conditions. Adding as few as 2 amino acids to the N terminus of the mature protease significantly increases its dissociation into monomers. Knowledge of the protease monomer structure and critical features of its dimerization may aid in the screening and design of compounds that target the protease prior to its maturation from the Gag-Pol precursor.  相似文献   
126.
127.
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) from bovine heart is a complicated multisubunit, membrane-bound assembly. Seven subunits are encoded by mitochondrial DNA, and the sequences of 36 nuclear encoded subunits have been described. The subunits of complex I and two subcomplexes (Ialpha and Ibeta) were resolved on one- and two-dimensional gels and by reverse-phase high performance liquid chromatography. Mass spectrometric analysis revealed two previously unknown subunits in complex I, named B14.7 and ESSS, one in each subcomplex. Coding sequences for each protein were identified in data bases and were confirmed by cDNA cloning and sequencing. Subunit B14.7 has an acetylated N terminus, no presequence, and contains four potential transmembrane helices. It is homologous to subunit 21.3b from complex I in Neurospora crassa and is related to Tim17, Tim22, and Tim23, which are involved in protein translocation across the inner membrane. Subunit ESSS has a cleaved mitochondrial import sequence and one potential transmembrane helix. A total of 45 different subunits of bovine complex I have now been characterized.  相似文献   
128.
FcgammaRs are specialized cell surface receptors that coordinately regulate immune responses. Although FcgammaR expression is a prerequisite for the development of several immune complex-mediated diseases, the mechanism responsible for FcgammaR-dependent regulation in autoimmunity remains unclear. Therefore, we assessed FcgammaR-dependent regulation of inflammation in proteoglycan-induced arthritis (PGIA) using FcgammaR(-/-) mice. FcgammaRIIb(-/-) mice developed arthritis at an earlier time point and with a greater severity than wild-type (WT) mice. In gamma-chain(-/-) (FcgammaRI(-/-) and FcgammaRIII(-/-)) mice, no clinical or histological evidence of inflammation was observed. Exacerbation of arthritis in FcgammaRIIb(-/-) mice correlated with enhanced PG-specific Ab production, but did not significantly affect PG-specific T cell priming. In gamma-chain(-/-) mice, the absence of arthritis did not correlate with serum Ab responses, as PG-specific Ab production was normal. Although PG-specific T cell proliferation was diminished, spleen cells from gamma-chain(-/-) mice successfully adoptively transferred arthritis into SCID mice. Our studies indicated that the mechanism responsible for FcgammaR regulation of PGIA development was at the level of inflammatory cytokine and beta-chemokine expression within the joint. FcgammaRIIb regulated the development of PGIA by controlling the initiation of cytokine and chemokine expression within the joint before the onset of arthritis, whereas the expression of FcgammaRI and or FcgammaRIII controlled cytokine and chemokine expression late in the development of PGIA during the onset of disease. These results suggest that FcgammaRs are critical for the development of inflammation during PGIA, possibly by maintaining or enhancing inflammatory cytokine and beta-chemokine production.  相似文献   
129.
130.
Although the T cell dependence of autoimmune responses in connective tissue diseases has been well established, limited information exists regarding the T cell targeting of self Ags in humans. To characterize the T cell response to a connective tissue disease-associated autoantigen, this study generated T cell clones from patients using a set of peptides encompassing the entire linear sequence of the 70-kDa subunit of U1 snRNP (U1-70kDa) small nuclear ribonucleoprotein. Despite the ability of U1-70kDa to undergo multiple forms of Ag modification that have been correlated with distinct clinical disease phenotypes, a remarkably limited and consistent pattern of T cell targeting of U1-70kDa was observed. All tested T cell clones generated against U1-70kDa were specific for epitopes within the RNA binding domain (RBD) of the protein. High avidity binding of the RBD with U1-RNA was preserved with the disease-associated modified forms of U1-70kDa tested. The high avidity interaction between the U1-RBD on the polypeptide and U1-RNA may be critical in immune targeting of this region in autoimmunity. The T cell autoimmune response to U1-70kDa appears to have less diversity than is seen in the humoral response; and therefore, may be a favorable target for therapeutic intervention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号