首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2544篇
  免费   276篇
  国内免费   2篇
  2023年   17篇
  2022年   26篇
  2021年   69篇
  2020年   53篇
  2019年   45篇
  2018年   54篇
  2017年   51篇
  2016年   73篇
  2015年   160篇
  2014年   148篇
  2013年   178篇
  2012年   221篇
  2011年   217篇
  2010年   105篇
  2009年   107篇
  2008年   147篇
  2007年   152篇
  2006年   142篇
  2005年   130篇
  2004年   98篇
  2003年   89篇
  2002年   80篇
  2001年   26篇
  2000年   24篇
  1999年   39篇
  1998年   23篇
  1997年   16篇
  1996年   14篇
  1994年   11篇
  1992年   9篇
  1991年   17篇
  1990年   13篇
  1989年   11篇
  1988年   18篇
  1987年   11篇
  1985年   9篇
  1984年   11篇
  1983年   17篇
  1982年   10篇
  1981年   11篇
  1978年   10篇
  1977年   14篇
  1975年   8篇
  1974年   12篇
  1973年   12篇
  1972年   8篇
  1971年   10篇
  1970年   9篇
  1969年   8篇
  1968年   8篇
排序方式: 共有2822条查询结果,搜索用时 15 毫秒
121.
Development of definitive endoderm from embryonic stem cells in culture   总被引:30,自引:0,他引:30  
The cellular and molecular events regulating the induction and tissue-specific differentiation of endoderm are central to our understanding of the development and function of many organ systems. To define and characterize key components in this process, we have investigated the potential of embryonic stem (ES) cells to generate endoderm following their differentiation to embryoid bodies (EBs) in culture. We found that endoderm can be induced in EBs, either by limited exposure to serum or by culturing in the presence of activin A (activin) under serum-free conditions. By using an ES cell line with the green fluorescent protein (GFP) cDNA targeted to the brachyury locus, we demonstrate that endoderm develops from a brachyury(+) population that also displays mesoderm potential. Transplantation of cells generated from activin-induced brachyury(+) cells to the kidney capsule of recipient mice resulted in the development of endoderm-derived structures. These findings demonstrate that ES cells can generate endoderm in culture and, as such, establish this differentiation system as a unique murine model for studying the development and specification of this germ layer.  相似文献   
122.
Salicylic acid (SA) is reported to protect plants from heat shock (HS), but insufficient is known about its role in thermotolerance or how this relates to SA signaling in pathogen resistance. We tested thermotolerance and expression of pathogenesis-related (PR) and HS proteins (HSPs) in Arabidopsis thaliana genotypes with modified SA signaling: plants with the SA hydroxylase NahG transgene, the nonexpresser of PR proteins (npr1) mutant, and the constitutive expressers of PR proteins (cpr1 and cpr5) mutants. At all growth stages from seeds to 3-week-old plants, we found evidence for SA-dependent signaling in basal thermotolerance (i.e. tolerance of HS without prior heat acclimation). Endogenous SA correlated with basal thermotolerance, with the SA-deficient NahG and SA-accumulating cpr5 genotypes having lowest and highest thermotolerance, respectively. SA promoted thermotolerance during the HS itself and subsequent recovery. Recovery from HS apparently involved an NPR1-dependent pathway but thermotolerance during HS did not. SA reduced electrolyte leakage, indicating that it induced membrane thermoprotection. PR-1 and Hsp17.6 were induced by SA or HS, indicating common factors in pathogen and HS responses. SA-induced Hsp17.6 expression had a different dose-response to PR-1 expression. HS-induced Hsp17.6 protein appeared more slowly in NahG. However, SA only partially induced HSPs. Hsp17.6 induction by HS was more substantial than by SA, and we found no SA effect on Hsp101 expression. All genotypes, including NahG and npr1, were capable of expression of HSPs and acquisition of HS tolerance by prior heat acclimation. Although SA promotes basal thermotolerance, it is not essential for acquired thermotolerance.  相似文献   
123.
Increasing evidence demonstrates the importance of long coiled-coil proteins for the spatial organization of cellular processes. Although several protein classes with long coiled-coil domains have been studied in animals and yeast, our knowledge about plant long coiled-coil proteins is very limited. The repeat nature of the coiled-coil sequence motif often prevents the simple identification of homologs of animal coiled-coil proteins by generic sequence similarity searches. As a consequence, counterparts of many animal proteins with long coiled-coil domains, like lamins, golgins, or microtubule organization center components, have not been identified yet in plants. Here, all Arabidopsis proteins predicted to contain long stretches of coiled-coil domains were identified by applying the algorithm MultiCoil to a genome-wide screen. A searchable protein database, ARABI-COIL (http://www.coiled-coil.org/arabidopsis), was established that integrates information on number, size, and position of predicted coiled-coil domains with subcellular localization signals, transmembrane domains, and available functional annotations. ARABI-COIL serves as a tool to sort and browse Arabidopsis long coiled-coil proteins to facilitate the identification and selection of candidate proteins of potential interest for specific research areas. Using the database, candidate proteins were identified for Arabidopsis membrane-bound, nuclear, and organellar long coiled-coil proteins.  相似文献   
124.
Redox modification of mitochondrial proteins is thought to play a key role in regulating cellular function, although direct evidence to support this hypothesis is limited. Using an in vivo model of mitochondrial redox stress, ethanol hepatotoxicity, the modification of mitochondrial protein thiols was examined using a proteomics approach. Specific labeling of reduced thiols in the mitochondrion from the livers of control and ethanol-fed rats was achieved by using the thiol reactive compound (4-iodobutyl)triphenylphosphonium (IBTP). This molecule selectively accumulates in the organelle and can be used to identify thiol-containing proteins. Mitochondrial proteins that have been modified are identified by decreased labeling with IBTP using two-dimensional SDS-PAGE followed by immunoblotting with an antibody directed against the triphenylphosphonium moiety of the IBTP molecule. Analyses of these data showed a significant decrease in IBTP labeling of thiols present in specific mitochondria matrix proteins from ethanol-fed rats compared with their corresponding controls. These proteins were identified as the low-K(m) aldehyde dehydrogenase and glucose-regulated protein 78. The decrease in IBTP labeling in aldehyde dehydrogenase was accompanied by a decrease in specific activity of the enzyme. These data demonstrate that mitochondrial protein thiol modification is associated with chronic alcohol intake and might contribute to the pathophysiology associated with hepatic injury. Taken together, we have developed a protocol to chemically tag and select thiol-modified proteins that will greatly enhance efforts to establish posttranslational redox modification of mitochondrial protein in in vivo models of oxidative or nitrosative stress.  相似文献   
125.
Luotonin A, a naturally occurring pyrroloquinazolinoquinoline alkaloid, has been previously demonstrated to be a topoisomerase I poison. A number of luotonin A derivatives have now been prepared through the condensation of anthranilic acid derivatives and 1,2-dihydropyrrolo[3,4-b]quinoline-3-one in the presence of phosphorus oxychloride. When dichloromethane was used as solvent the reaction proceeded to a single product. In contrast when the reaction was carried out in tetrahydrofuran or in phosphorus oxychloride, an additional isomeric product was obtained. The luotonin A analogues were evaluated for their ability to effect stabilization of the covalent binary complex formed between human topoisomerase I and DNA, and for cytotoxicity toward a yeast strain expressing the human topoisomerase I.  相似文献   
126.
Some amino acid substitutions in phage P22 coat protein cause a temperature-sensitive folding (tsf) phenotype. In vivo, these tsf amino acid substitutions cause coat protein to aggregate and form intracellular inclusion bodies when folded at high temperatures, but at low temperatures the proteins fold properly. Here the effects of tsf amino acid substitutions on folding and unfolding kinetics and the stability of coat protein in vitro have been investigated to determine how the substitutions change the ability of coat protein to fold properly. The equilibrium unfolding transitions of the tsf variants were best fit to a three-state model, N if I if U, where all species concerned were monomeric, a result confirmed by velocity sedimentation analytical ultracentrifugation. The primary effect of the tsf amino acid substitutions on the equilibrium unfolding pathway was to decrease the stability (DeltaG) and the solvent accessibility (m-value) of the N if I transition. The kinetics of folding and unfolding of the tsf coat proteins were investigated using tryptophan fluorescence and circular dichroism (CD) at 222 nm. The tsf amino acid substitutions increased the rate of unfolding by 8-14-fold, with little effect on the rate of folding, when monitored by tryptophan fluorescence. In contrast, when folding or unfolding reactions were monitored by CD, the reactions were too fast to be observed. The tsf coat proteins are natural substrates for the molecular chaperones, GroEL/S. When native tsf coat protein monomers were incubated with GroEL, they bound efficiently, indicating that a folding intermediate was significantly populated even without denaturant. Thus, the tsf coat proteins aggregate in vivo because of an increased propensity to populate this unfolding intermediate.  相似文献   
127.
We address the importance of natural selection in the origin and maintenance of rapid protein folding by experimentally characterizing the folding kinetics of two de novo designed proteins, NC3-NCAP and ENH-FSM1. These 51 residue proteins, which adopt the helix-turn-helix homeodomain fold, share as few as 12 residues in common with their most closely related natural analog. Despite the replacement of up to 3/4 of their residues by a computer algorithm optimizing only thermodynamic properties, the designed proteins fold as fast or faster than the 35,000 s(-1) observed for the closest natural analog. Thus these de novo designed proteins, which were produced in the complete absence of selective pressures or design constraints explicitly aimed at ensuring rapid folding, are among the most rapidly folding proteins reported to date.  相似文献   
128.
Replication of hepatitis C virus (HCV) RNA in virus-infected cells is believed to be catalyzed by viral replicase complexes (RCs), which may consist of various virally encoded nonstructural proteins and host factors. In this study, we characterized the RC activity of a crude membrane fraction isolated from HCV subgenomic replicon cells. The RC preparation was able to use endogenous replicon RNA as a template to synthesize both single-stranded (ss) and double-stranded (ds) RNA products. Divalent cations (Mg2+ and Mn2+) showed different effects on RNA synthesis. Mg2+ ions stimulated the synthesis of ss RNA but had little effect on the synthesis of ds RNA. In contrast, Mn2+ ions enhanced primarily the synthesis of ds RNA. Interestingly, ss RNA could be synthesized under certain conditions in the absence of ds RNA, and vice versa, suggesting that the ss and ds RNA were derived either from different forms of replicative intermediates or from different RCs. Pulse-chase analysis showed that radioactivity incorporated into the ss RNA was chased into the ds RNA and other larger RNA species. This observation indicated that the newly synthesized ss RNA could serve as a template for a further round of RNA synthesis. Finally, 3' deoxyribonucleoside triphosphates were able to inhibit RNA synthesis in this cell-free system, presumably through chain termination, with 3' dGTP having the highest potency. Establishment of the replicase assay will facilitate the identification and evaluation of potential inhibitors that would act against the entire RC of HCV.  相似文献   
129.
We present the first solution structure of the HIV-1 protease monomer spanning the region Phe1-Ala95 (PR1-95). Except for the terminal regions (residues 1-10 and 91-95) that are disordered, the tertiary fold of the remainder of the protease is essentially identical to that of the individual subunit of the dimer. In the monomer, the side chains of buried residues stabilizing the active site interface in the dimer, such as Asp25, Asp29, and Arg87, are now exposed to solvent. The flap dynamics in the monomer are similar to that of the free protease dimer. We also show that the protease domain of an optimized precursor flanked by 56 amino acids of the N-terminal transframe region is predominantly monomeric, exhibiting a tertiary fold that is quite similar to that of PR1-95 structure. This explains the very low catalytic activity observed for the protease prior to its maturation at its N terminus as compared with the mature protease, which is an active stable dimer under identical conditions. Adding as few as 2 amino acids to the N terminus of the mature protease significantly increases its dissociation into monomers. Knowledge of the protease monomer structure and critical features of its dimerization may aid in the screening and design of compounds that target the protease prior to its maturation from the Gag-Pol precursor.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号