全文获取类型
收费全文 | 521篇 |
免费 | 49篇 |
国内免费 | 1篇 |
专业分类
571篇 |
出版年
2023年 | 3篇 |
2022年 | 12篇 |
2021年 | 17篇 |
2020年 | 8篇 |
2019年 | 8篇 |
2018年 | 20篇 |
2017年 | 12篇 |
2016年 | 18篇 |
2015年 | 16篇 |
2014年 | 20篇 |
2013年 | 37篇 |
2012年 | 51篇 |
2011年 | 53篇 |
2010年 | 25篇 |
2009年 | 17篇 |
2008年 | 26篇 |
2007年 | 19篇 |
2006年 | 19篇 |
2005年 | 19篇 |
2004年 | 21篇 |
2003年 | 10篇 |
2002年 | 12篇 |
2001年 | 8篇 |
2000年 | 9篇 |
1999年 | 9篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 6篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1992年 | 2篇 |
1991年 | 7篇 |
1990年 | 5篇 |
1989年 | 2篇 |
1988年 | 7篇 |
1987年 | 6篇 |
1986年 | 5篇 |
1985年 | 5篇 |
1984年 | 4篇 |
1983年 | 4篇 |
1980年 | 2篇 |
1979年 | 5篇 |
1977年 | 4篇 |
1976年 | 11篇 |
1975年 | 2篇 |
1974年 | 3篇 |
1972年 | 3篇 |
1969年 | 3篇 |
1966年 | 2篇 |
1965年 | 2篇 |
排序方式: 共有571条查询结果,搜索用时 31 毫秒
51.
Ashokraj Shanmugam Arif Hasan Khan Robin Senthil Kumar Thamilarasan Harshavardhanan Vijayakumar Sathishkumar Natarajan Hoy-Taek Kim Jong-In Park Ill-Sup Nou 《Journal of Plant Biology》2017,60(5):472-484
The Minichromosome maintenance protein [MCM (2-7)] complex is associated with helicase activity for replication fork formation during DNA replication. We identified and characterized each 12 putative MCM genes from Brassica oleracea and Brassica rapa. MCM genes were classified into nine groups according to their evolutionary relationships. A high number of syntenic regions were present on chromosomes C03 and A03 in B. oleracea and B. rapa, respectively, compared to the other chromosomes. Expression analysis showed that most of the MCM(2-7) helicase-subunit genes and their coregulating MCM genes were upregulated during hydroxyurea (HU) induced stress in B. oleracea. In B. rapa, MCM(2-7) helicase genes BrMCM2_2, BrMCM7_1, BrMCM7_2 and their co-regulating genes were upregulated during replication stress. During cold stress, BoMCM6 in B. oleracea and BrMCM5 in B. rapa were remarkably upregulated. During salt stress, BoMCM6_2, BoMCM7_1, BoMCM8, BoMCM9, and BoMCM10 were markedly upregulated in B. oleracea. Hence, our study identified the candidate MCM family genes those possess abiotic stress-responsive behavior and DNA replication stress tolerance. As the first genome-wide analysis of MCM genes in B. oleracea and B. rapa, this work provides a foundation to develop stress responsive plants. Further functional and molecular studies on MCM genes will be helpful to enhance stress tolerance in plants. 相似文献
52.
53.
Li Y Reddy MA Miao F Shanmugam N Yee JK Hawkins D Ren B Natarajan R 《The Journal of biological chemistry》2008,283(39):26771-26781
Nuclear factor kappa-B (NF-kappaB)-regulated inflammatory genes, such as TNF-alpha (tumor necrosis factor-alpha), play key roles in the pathogenesis of inflammatory diseases, including diabetes and the metabolic syndrome. However, the nuclear chromatin mechanisms are unclear. We report here that the chromatin histone H3-lysine 4 methyltransferase, SET7/9, is a novel coactivator of NF-kappaB. Gene silencing of SET7/9 with small interfering RNAs in monocytes significantly inhibited TNF-alpha-induced inflammatory genes and histone H3-lysine 4 methylation on these promoters, as well as monocyte adhesion to endothelial or smooth muscle cells. Chromatin immunoprecipitation revealed that SET7/9 small interfering RNA could reduce TNF-alpha-induced recruitment of NF-kappaB p65 to inflammatory gene promoters. Inflammatory gene induction by ligands of the receptor for advanced glycation end products was also attenuated in SET7/9 knockdown monocytes. In addition, we also observed increased inflammatory gene expression and SET7/9 recruitment in macrophages from diabetic mice. Microarray profiling revealed that, in TNF-alpha-stimulated monocytes, the induction of 25% NF-kappaB downstream genes, including the histone H3-lysine 27 demethylase JMJD3, was attenuated by SET7/9 depletion. These results demonstrate a novel role for SET7/9 in inflammation and diabetes. 相似文献
54.
Role of autophagy in angiogenesis in aortic endothelial cells 总被引:1,自引:0,他引:1
Du J Teng RJ Guan T Eis A Kaul S Konduri GG Shi Y 《American journal of physiology. Cell physiology》2012,302(2):C383-C391
Angiogenesis plays critical roles in the recovery phase of ischemic heart disease and peripheral vascular disease. An increase in autophagy is protective under hypoxic and chronic ischemic conditions. In the present study we determined the role of autophagy in angiogenesis. 3-Methyladenine (3-MA) and small interfering RNA (siRNA) against ATG5 were used to inhibit autophagy induced by nutrient deprivation of cultured bovine aortic endothelial cells (BAECs). Assays of BAECs tube formation and cell migration revealed that inhibition of autophagy by 3-MA or siRNA against ATG5 reduced angiogenesis. In contrast, induction of autophagy by overexpression of ATG5 increased BAECs tube formation and migration. Additionally, inhibiting autophagy impaired vascular endothelial growth factor (VEGF)-induced angiogenesis. However, inhibition of autophagy did not alter the expression of pro-angiogenesis factors such as VEGF, platelet-derived growth factor, or integrin αV. Furthermore, autophagy increased reactive oxygen species (ROS) formation and activated AKT phosphorylation. Inhibition of autophagy significantly decreased the production of ROS and activation of AKT but not of extracellular regulated kinase, whereas overexpression of ATG5 increased cellular ROS production and AKT activation in BAECs. Inhibition of AKT activation or ROS production significantly decreased the tube formation induced by ATG5 overexpression. Here we report a novel observation that autophagy plays an important role in angiogenesis in BAECs. Induction of autophagy promotes angiogenesis while inhibition of autophagy suppresses angiogenesis, including VEGF-induced angiogenesis. ROS production and AKT activation might be important mechanisms for mediating angiogenesis induced by autophagy. Our findings indicate that targeting autophagy may provide an important new tool for treating cardiovascular disease. 相似文献
55.
Fernández Robledo JA Caler E Matsuzaki M Keeling PJ Shanmugam D Roos DS Vasta GR 《International journal for parasitology》2011,41(12):1217-1229
Perkinsus marinus (Phylum Perkinsozoa) is a protozoan parasite that has devastated natural and farmed oyster populations in the USA, significantly affecting the shellfish industry and the estuarine environment. The other two genera in the phylum, Parvilucifera and Rastrimonas, are parasites of microeukaryotes. The Perkinsozoa occupies a key position at the base of the dinoflagellate branch, close to its divergence from the Apicomplexa, a clade that includes parasitic protista, many harbouring a relic plastid. Thus, as a taxon that has also evolved toward parasitism, the Perkinsozoa has attracted the attention of biologists interested in the evolution of this organelle, both in its ultrastructure and the conservation, loss or transfer of its genes. A review of the recent literature reveals mounting evidence in support of the presence of a relic plastid in P. marinus, including the presence of multimembrane structures, characteristic metabolic pathways and proteins with a bipartite N-terminal extension. Further, these findings raise intriguing questions regarding the potential functions and unique adaptation of the putative plastid and/or plastid genes in the Perkinsozoa. In this review we analyse the above-mentioned evidence and evaluate the potential future directions and expected benefits of addressing such questions. Given the rapidly expanding molecular/genetic resources and methodological toolbox for Perkinsus spp., these organisms should complement the currently established models for investigating plastid evolution within the Chromalveolata. 相似文献
56.
Sergiy Tyukhtenko Ioannis Karageorgos Girija Rajarshi Nikolai Zvonok Spiro Pavlopoulos David R. Janero Alexandros Makriyannis 《The Journal of biological chemistry》2016,291(6):2556-2565
The serine hydrolase monoacylglycerol lipase (MGL) functions as the main metabolizing enzyme of 2-arachidonoyl glycerol, an endocannabinoid signaling lipid whose elevation through genetic or pharmacological MGL ablation exerts therapeutic effects in various preclinical disease models. To inform structure-based MGL inhibitor design, we report the direct NMR detection of a reversible equilibrium between active and inactive states of human MGL (hMGL) that is slow on the NMR time scale and can be modulated in a controlled manner by pH, temperature, and select point mutations. Kinetic measurements revealed that hMGL substrate turnover is rate-limited across this equilibrium. We identify a network of aromatic interactions and hydrogen bonds that regulates hMGL active-inactive state interconversion. The data highlight specific inter-residue interactions within hMGL modulating the enzymes function and implicate transitions between active (open) and inactive (closed) states of the hMGL lid domain in controlling substrate access to the enzymes active site. 相似文献
57.
Balaji KN Goyal G Narayana Y Srinivas M Chaturvedi R Mohammad S 《Microbes and infection / Institut Pasteur》2007,9(3):271-281
Ectopic expression of the Mycobacterium tuberculosis PE-family gene Rv1818c, triggers apoptosis in the mammalian Jurkat T cells, which is blocked by anti-apoptotic protein Bcl-2. Although complete overlap is not observed, a considerable proportion of cellular pools of ectopically expressed Rv1818c localizes to mitochondria. However, recombinant Rv1818c does not trigger release of cytochrome c from isolated mitochondria even though Rv1818c protein induced apoptosis of Jurkat T cells. Apoptosis induced by Rv1818c is blocked by the broad-spectrum caspase inhibitory peptide zVAD-FMK. Unexpectedly, Rv1818c-induced apoptosis is not blocked in a Jurkat sub-clone deficient for caspase-8 (JI 9.2) or in cells where caspase-9 function is inhibited or expression of caspase-9 reduced by siRNA, arguing against a central role for these caspases in Rv1818c-induced apoptotic signaling. Depleting cellular pools of the mitochondrial protein Smac/DIABLO substantially reduces apoptosis consistent with mitochondrial involvement in this death pathway. We present evidence that Rv1818c-induced apoptosis is blocked by the co-transfection of an endogenous inhibitor of caspase activation, XIAP in T cells. Additionally, Rv1818c is released into extracellular environment via exosomes secreted by M. tuberculosis infected BM-DC's and macrophages. Furthermore, the extracellular Rv1818c protein can be detected in T cells co-cultured with infected BM-DC's. Taken together, these data suggest that Rv1818c-induced apoptotic signaling is likely regulated in part by the Smac-dependent activation of caspases in T cells. 相似文献
58.
Cloning of hydrogenase genes and fine structure analysis of an operon essential for H2 metabolism in Escherichia coli. 总被引:2,自引:10,他引:2 下载免费PDF全文
Escherichia coli has two unlinked genes that code for hydrogenase synthesis and activity. The DNA fragments containing the two genes (hydA and hydB) were cloned into a plasmid vector, pBR322. The plasmids containing the hyd genes (pSE-290 and pSE-111 carrying the hydA and hydB genes, respectively) were used to genetically map a total of 51 mutant strains with defects in hydrogenase activity. A total of 37 mutants carried a mutation in the hydB gene, whereas the remaining 14 hyd were hydA. This complementation analysis also established the presence of two new genes, so far unidentified, one coding for formate dehydrogenase-2 (fdv) and another producing an electron transport protein (fhl) coupling formate dehydrogenase-2 to hydrogenase. Three of the four genes, hydB, fhl, and fdv, may constitute a single operon, and all three genes are carried by a 5.6-kilobase-pair chromosomal DNA insert in plasmid pSE-128. Plasmids carrying a part of this 5.6-kilobase-pair DNA (pSE-130) or fragments derived from this DNA in different orientations (pSE-126 and pSE-129) inhibited the production of active formate hydrogenlyase. This inhibition occurred even in a prototrophic E. coli, strain K-10, but only during an early induction period. These results, based on complementation analysis with cloned DNA fragments, show that both hydA and hydB genes are essential for the production of active hydrogenase. For the expression of active formate hydrogenlyase, two other gene products, fhl and fdv are also needed. All four genes map between 58 and 59 min in the E. coli chromosome. 相似文献
59.
Purification and characterization of two forms of hydrogenase isoenzyme 1 from Escherichia coli. 下载免费PDF全文
A hydrogenase associated with dihydrogen uptake (HUP hydrogenase) was purified from an Escherichia coli mutant (strain SE1100) defective in utilization of molybdate and thus fermentative dihydrogen production. This protein had two subunits with apparent molecular weights of 59,000 and 28,000 (form 1). An immunologically cross-reactive hydrogenase was also purified from E. coli K10 grown in glucose-minimal medium and harvested at the mid-exponential phase of growth. Upon purification to homogeneity, this hydrogenase contained only one subunit with an apparent molecular weight of 59,000 (form 2). The two forms of the HUP hydrogenase exhibited similar kinetic characteristics. The electrophoretic properties of the enzyme and its response to pH suggest that this HUP hydrogenase is the HYD1 isoenzyme. The HYD1 isoenzyme was the only hydrogenase detectable during the stationary phase of growth in E. coli grown in Mo-deficient medium. 相似文献
60.
Shanmugam Vanithamani Santhanam Shanmughapriya Ramasamy Narayanan Veerapandian Raja Murugesan Kanagavel Karikalacholan Sivasankari Kalimuthusamy Natarajaseenivasan 《PloS one》2015,10(9)