首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   14篇
  国内免费   14篇
  2023年   1篇
  2022年   7篇
  2021年   9篇
  2020年   5篇
  2019年   2篇
  2018年   6篇
  2017年   7篇
  2016年   7篇
  2015年   5篇
  2014年   8篇
  2013年   17篇
  2012年   8篇
  2011年   6篇
  2010年   6篇
  2009年   3篇
  2008年   8篇
  2007年   9篇
  2006年   4篇
  2005年   11篇
  2004年   1篇
  2003年   10篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
71.
72.
73.
IGFBP-5 is a member of the IGF families. Using PCR-SSCP, genotypic and allelic frequencies were analyzed in 18 pig breeds (n = 600). The association between haplotypes and production performance was analyzed in a Jinhua × Pietrain population family (n = 212, total 24 traits). Two SNPs (T199C and G485A) within the gene were analyzed. The breeds had different genotypic and allelic frequencies. Typically, the Chinese native pig breeds carried a higher allele C and G frequency (over 50%) than those of the European pigs, and only Guangdong Large White and wild boar were at Hardy–Weinberg equilibrium. The pigs carrying the CG haplotype had higher hue, loin, and thigh pH1 values than pigs with the TA haplotype, and pigs with the TA haplotype had the lowest loin pH2 value and highest color-a value among the haplotypes. It is proposed that the IGFBP-5 gene is associated with the variation in meat quality, especially in pH value together with other QTLs on chromosome 15.  相似文献   
74.
Pinus tabulaeformis Carr. forest, the dominant community in Ziwuling Mountain lying in the hilly loess region, was studied for its nutrient distributions and bio-cycle characteristics in both natural and artificial forms. The results showed that the changes in the nutrient contents for different components in the same Pinus tabulaeformis Carr. forest stood in the order of needles > branches > bark > roots > bole. The aboveground nutrient elements in needles, branches, bark bole and litterfalls stood in the order of Ca > N > K > Mg > P, but the nutrients stored in the soil stood in the order of Ca > K > Mg > N > P. The accumulated amounts of nutrients increased first and then decreased with the increased age of the forest. The nutrient amounts reached their maximum when the stand was 30 years old, and decreased greatly when it was 50 years old. The 30-year-old artificial Pinus tabulaeformis Carr. forest had the highest annual accumulated amount of nutrients, and different stands stood in the order of II > III > IV > I. Comparatively, annual accumulated nutrients in different components stood in the order of needles > branches > roots > bark > bole. It was also suggested that the amounts of nutrients annually taken in from and retained in the natural Pinus tabulaeformis Carr. forest were significantly higher than those in artificial forests. The coefficients of nutrient use in various Pinus tabulaeformis Carr. stands stood in the order of Ca > Mg > N > K > P, but the nutrient use efficiency (NUE) of the same element decreased with increased age of the forest. There were no differences in the utilization coefficient and the turnover period of nutrients in both natural and artificial matured Pinus tabulaeformis Carr. forests.  相似文献   
75.
The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO2, CH4 and N2O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH4 uptake decreased by 6.0%. Furthermore, the percentage increase in N2O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver (Ecology Letters, 2009, 12:1103–1117). There was also greater stimulation of soil C pools (15.70 kg C ha?1 year?1 per kg N ha?1 year?1) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO2/year. It also increased net soil GHG emissions by 10.20 Pg CO2‐Geq (CO2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.  相似文献   
76.
植物根系分泌物主要生态功能研究进展   总被引:1,自引:0,他引:1  
根系分泌物在植物根系-土壤-微生物互作过程及其生态反馈机制中发挥重要作用。在植物根际复杂网络互作过程中, 根系分泌物被认为是“根际对话”的媒介, 其在调控植物适应微生境、缓解根际养分竞争及构建根际微生物群落结构方面意义重大。该文结合国内外该领域主要研究成果, 综述了根系分泌物对植物生长、土壤微生物特性及土壤养分循环的影响, 并展望了未来根系分泌物的研究方向。  相似文献   
77.
G-quadruplexes (G4s) are four-stranded nucleic acid structures adopted by some repetitive guanine-rich sequences. Putative G-quadruplex-forming sequences (PQSs) are highly prevalent in human genome. Recently some G4s have been reported to have cancer-selective antiproliferative activity. A G4 DNA, AS1411, is currently in phase II clinical trials as an anticancer agent, which is reported to bind tumor cells by targeting surface nucleolin. AS1411 also has been extensively investigated as a target-recognition element for cancer cell specific drug delivery or cancer cell imaging. Here we show that, in addition to AS1411, intramolecular G4s with parallel structure (including PQSs in genes) have general binding activity to many cell lines with different affinity. The binding of these G4s compete with each other, and their targets are certain cellular surface proteins. The tested G4s exhibit enhanced cellular uptake than non-G4 sequences. This uptake may be through the endosome/lysosome pathway, but it is independent of cellular binding of the G4s. The tested G4s also show selective antiproliferative activity that is independent of their cellular binding. Our findings provide new insight into the molecular recognition of G4s by cells; offer new clues for understanding the functions of G4s in vivo, and may extend the potential applications of G4s.  相似文献   
78.
A highly sensitive and attractive antifouling impedimetric aptasensor for the determination of thrombin in undiluted serum sample was developed. The aptasensor was fabricated by co-assembling thiol-modified anti-thrombin binding aptamer, dithiothreitol and mercaptohexanol on the surface of gold electrode. The performance of aptasensor was characterized by atomic force microscopy, contact angle and electrochemical impedance spectroscopy. In the measurement of thrombin, the change in interfacial electron transfer resistance of aptasensor was monitored using a redox couple of Fe(CN)(6)(3-/4-). The increase in the electron transfer resistance was linearly proportional to the concentration of thrombin in the range from 1.0 to 20ng/mL and a detection limit of 0.3ng/mL thrombin was achieved. The fabricated aptasensor displayed attractive antifouling properties and allowed direct quantification of extrinsic thrombin down to 0.08ng/mL in undiluted serum sample. This work provides a promising strategy for clinical application with impressive sensitivity and antifouling characteristics.  相似文献   
79.
Wang C  Shangguan L  Kibet KN  Wang X  Han J  Song C  Fang J 《PloS one》2011,6(7):e21259

Background

Alignment analysis of the Vv-miRNAs identified from various grapevine cultivars indicates that over 30% orthologous Vv-miRNAs exhibit a 1–3 nucleotide discrepancy only at their ends, suggesting that this sequence discrepancy is not a random event, but might mainly derive from divergence of cultivars. With advantages of miR-RACE technology in determining precise sequences of potential miRNAs from bioinformatics prediction, the precise sequences of vv-miRNAs predicted computationally can be verified with miR-RACE in a different grapevine cultivar. This presents itself as a new approach for large scale discovery of precise miRNAs in different grapevine varieties.

Methodology/Principal Findings

Among 88 unique sequences of Vv-miRNAs from bioinformatics prediction, 83 (96.3%) were successfully validated with MiR-RACE in grapevine cv. ‘Summer Black’. All the validated sequences were identical to their corresponding ones obtained from deep sequencing of the small RNA library of ‘Summer Black’. Quantitative RT-PCR analysis of the expressions levels of 10 Vv-miRNA/target gene pairs in grapevine tissues showed some negative correlation trends. Finally, comparison of Vv-miRNA sequences with their orthologs in Arabidopsis and study on the influence of divergent bases of the orthologous miRNAs on their targeting patterns in grapevine were also done.

Conclusion

The validation of precise sequences of potential Vv-miRNAs from computational prediction in a different grapevine cultivar can be a new way to identify the orthologous Vv-miRNAs. Nucleotide discrepancy of orthologous Vv-miRNAs from different grapevine cultivars normally does not change their target genes. However, sequence variations of some orthologous miRNAs in grapevine and Arabidopsis can change their targeting patterns. These precise Vv-miRNAs sequences validated in our study could benefit some further study on grapevine functional genomics.  相似文献   
80.
Hydrogen sulfide (H2S) is emerging as an important signalling molecule that regulates plant growth and abiotic stress responses. However, the roles of H2S in symbiotic nitrogen (N) assimilation and remobilization have not been characterized. Therefore, we examined how H2S influences the soybean (Glycine max)/rhizobia interaction in terms of symbiotic N fixation and mobilization during N deficiency-induced senescence. H2S enhanced biomass accumulation and delayed leaf senescence through effects on nodule numbers, leaf chlorophyll contents, leaf N resorption efficiency, and the N contents in different tissues. Moreover, grain numbers and yield were regulated by H2S and rhizobia, together with N accumulation in the organs, and N use efficiency. The synergistic effects of H2S and rhizobia were also demonstrated by effects on the enzyme activities, protein abundances, and gene expressions associated with N metabolism, and senescence-associated genes (SAGs) expression in soybeans grown under conditions of N deficiency. Taken together, these results show that H2S and rhizobia accelerate N assimilation and remobilization by regulation of the expression of SAGs during N deficiency-induced senescence. Thus, H2S enhances the vegetative and reproductive growth of soybean, presumably through interactions with rhizobia under conditions of N deficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号