首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1350篇
  免费   134篇
  2023年   9篇
  2022年   22篇
  2021年   34篇
  2020年   21篇
  2019年   23篇
  2018年   35篇
  2017年   26篇
  2016年   50篇
  2015年   68篇
  2014年   68篇
  2013年   103篇
  2012年   97篇
  2011年   116篇
  2010年   78篇
  2009年   55篇
  2008年   110篇
  2007年   100篇
  2006年   64篇
  2005年   75篇
  2004年   62篇
  2003年   54篇
  2002年   50篇
  2001年   11篇
  2000年   9篇
  1999年   5篇
  1998年   9篇
  1997年   6篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1988年   7篇
  1987年   7篇
  1986年   4篇
  1981年   4篇
  1977年   4篇
  1975年   4篇
  1969年   3篇
  1961年   2篇
  1960年   6篇
  1959年   6篇
  1958年   8篇
  1957年   7篇
  1956年   3篇
  1955年   3篇
  1953年   2篇
  1951年   2篇
  1946年   3篇
排序方式: 共有1484条查询结果,搜索用时 15 毫秒
101.
Cell-matrix adhesion plays a key role in controlling cell morphology and signaling. Stimuli that disrupt cell-matrix adhesion (e.g., myeloperoxidase and other matrix-modifying oxidants/enzymes released during inflammation) are implicated in triggering pathological changes in cellular function, phenotype and viability in a number of diseases. Here, we describe how cell-substrate impedance and live cell imaging approaches can be readily employed to accurately quantify real-time changes in cell adhesion and de-adhesion induced by matrix modification (using endothelial cells and myeloperoxidase as a pathophysiological matrix-modifying stimulus) with high temporal resolution and in a non-invasive manner. The xCELLigence cell-substrate impedance system continuously quantifies the area of cell-matrix adhesion by measuring the electrical impedance at the cell-substrate interface in cells grown on gold microelectrode arrays. Image analysis of time-lapse differential interference contrast movies quantifies changes in the projected area of individual cells over time, representing changes in the area of cell-matrix contact. Both techniques accurately quantify rapid changes to cellular adhesion and de-adhesion processes. Cell-substrate impedance on microelectrode biosensor arrays provides a platform for robust, high-throughput measurements. Live cell imaging analyses provide additional detail regarding the nature and dynamics of the morphological changes quantified by cell-substrate impedance measurements. These complementary approaches provide valuable new insights into how myeloperoxidase-catalyzed oxidative modification of subcellular extracellular matrix components triggers rapid changes in cell adhesion, morphology and signaling in endothelial cells. These approaches are also applicable for studying cellular adhesion dynamics in response to other matrix-modifying stimuli and in related adherent cells (e.g., epithelial cells).  相似文献   
102.
Urban landscapes are commonly considered too mundane and corrupted to be biotically interesting. Recent insect surveys employing 29 Malaise traps throughout Los Angeles, California, however, have uncovered breeding populations of two unexpected species of one of the most studied and familiar groups of organisms, Drosophila “fruit” flies. Unlike most introduced species of drosophilids, which breed in fresh or decaying fruits, these are specialized flower-breeders. A common species in the survey was Drosophila (Drosophila) gentica Wheeler and Takada, previously collected only once, in El Salvador. It belongs to the flavopilosa species group, all species of which have been known until now from central Chile, Argentina and Uruguay, to Veracruz, Mexico and the Caribbean, breeding in flowers of Cestrum (“jessamine”) and Sessea (Solanaceae). The Los Angeles populations are probably breeding in a native and/or introduced Cestrum; in addition, populations in San Luis Obispo County were visiting ornamental Cestrum. Drosophila gentica occurs as far north as San Francisco, where it was found breeding in Cestrum aurantiacum. D. gentica is redescribed and figured in detail for diagnostic and identification purposes. Specimens from Jamaica previously identified as D. gentica are a distinct species but are not formally described in lieu of complete male specimens. Rare in the Malaise traps was Drosophila (Sophophora) flavohirta Malloch, a common species in Australia on the blossoms of native Myrtaceae, found on introduced Eucalyptus in South Africa and both Eucalyptus and Syzygium in Madagascar; adults feed on myrtaceous pollen and nectar, larvae breed in the flowers. It is also redescribed in detail, including its unusual egg. This is the first New World report of this species; DNA sequences confirm it is a morphologically highly aberrant member of the D. melanogaster species group. This study reveals how intensive field sampling can uncover remarkable biodiversity in even the most urbanized areas.  相似文献   
103.
BackgroundDespite evidence about the "modern epidemic" of overdiagnosis, and expanding disease definitions that medicalize more people, data are lacking on public views about these issues. Our objective was to measure public perceptions about overdiagnosis and views about financial ties of panels setting disease definitions.MethodsWe conducted a 15 minute Computer Assisted Telephone Interview with a randomly selected community sample of 500 Australians in January 2014. We iteratively developed and piloted a questionnaire, with a convenience sample (n=20), then with participants recruited by a research company (n=20). Questions included whether respondents had been informed about overdiagnosis; opinions on informing people; and views about financial ties among panels writing disease definitions.FindingsOur sample was generally representative, but included a higher proportion of females and seniors, typical of similar surveys. American Association for Public Opinion Research response rate was 20% and cooperation rate was 44%. Only 10% (95% CI 8%–13%) of people reported ever being told about overdiagnosis by a doctor. 18% (95% CI 11%–28%) of men who reported having prostate cancer screening, and 10% (95% CI 6%–15%) of women who reported having mammography said they were told about overdiagnosis. 93% (95% CI 90%–95%) agreed along with screening benefits, people should be informed about overdiagnosis. On panels setting disease definitions, 78% (95% CI 74%–82%) felt ties to pharmaceutical companies inappropriate, and 91% (95% CI 82%–100%) believed panels should have a minority or no members with ties. Limitations included questionnaire novelty and complexity.ConclusionsA small minority of Australians surveyed, including those reporting being screened for prostate or breast cancer, reported being informed of overdiagnosis; most believed people should be informed; and a majority felt it inappropriate that doctors with ties to pharmaceutical companies write disease definitions. Results suggest strategies to better inform people about overdiagnosis, and review disease definition processes, have significant public sympathy.  相似文献   
104.
Cells respond to endoplasmic reticulum (ER) stress through the unfolded protein response (UPR), autophagy and cell death. In this study we utilized casp9+/+ and casp9−/− MEFs to determine the effect of inhibition of mitochondrial apoptosis pathway on ER stress-induced-cell death, UPR and autophagy. We observed prolonged activation of UPR and autophagy in casp9−/− cells as compared with casp9+/+ MEFs, which displayed transient activation of both pathways. Furthermore we showed that while casp9−/− MEFs were resistant to ER stress, prolonged exposure led to the activation of a non-canonical, caspase-mediated mode of cell death.  相似文献   
105.

Background and Aims

The smoke-derived compound karrikinolide (KAR1) shows significant potential as a trigger for the synchronous germination of seeds in a variety of plant-management contexts, from weed seeds in paddocks, to native seeds when restoring degraded lands. Understanding how KAR1 interacts with seed physiology is a necessary precursor to the development of the compound as an efficient and effective management tool. This study tested the ability of KAR1 to stimulate germination of seeds of the global agronomic weed Brassica tournefortii, at different hydration states, to gain insight into how the timing of KAR1 applications in the field should be managed relative to rain events.

Methods

Seeds of B. tournefortii were brought to five different hydration states [equilibrated at 15 % relative humidity (RH), 47 % RH, 96 % RH, fully imbibed, or re-dried to 15 % RH following maximum imbibition] then exposed to 1 nm or 1 µm KAR1 for one of five durations (3 min, 1 h, 24 h, 14 d or no exposure).

Key Results

Dry seeds with no history of imbibition were the most sensitive to KAR1; sensitivity was lower in seeds that were fully imbibed or fully imbibed then re-dried. In addition, reduced sensitivity to KAR1 was associated with an increased sensitivity to exogenously applied abscisic acid (ABA).

Conclusions

Seed water content and history of imbibition were found to significantly influence whether seeds germinate in response to KAR1. To optimize the germination response of seeds, KAR1 should be applied to dry seeds, when sensitivity to ABA is minimized.  相似文献   
106.
Experiments were conducted to determine factors that affect sensitivity of Salmonella enterica serovar Typhimurium to sodium chlorate (5 mM). In our first experiment, cultures grown without chlorate grew more rapidly than those with chlorate. An extended lag before logarithmic growth was observed in anaerobic but not aerobic cultures containing chlorate. Chlorate inhibition of growth during aerobic culture began later than that observed in anaerobic cultures but persisted once inhibition was apparent. Conversely, anaerobic cultures appeared to adapt to chlorate after approximately 10 h of incubation, exhibiting rapid compensatory growth. In anaerobic chlorate-containing cultures, 20% of total viable counts were resistant to chlorate by 6 h and had propagated to 100% resistance (>109 CFU mL?1) by 24 h. In the aerobic chlorate-containing cultures, 12.9% of colonies had detectable resistance to chlorate by 6 h, but only 1% retained detectable resistance at 24 h, likely because these cultures had opportunity to respire on oxygen and were thus not enriched via the selective pressure of chlorate. In another study, treatment with shikimic acid (0.34 mM), molybdate (1 mM) or their combination had little effect on aerobic or anaerobic growth of Salmonella in the absence of added chlorate. As observed in our earlier study, chlorate resistance was not detected in any cultures without added chlorate. Chlorate resistant Salmonella were recovered at equivalent numbers regardless of treatment after 8 h of aerobic or anaerobic culture with added chlorate; however, by 24 h incubation chlorate sensitivity was completely restored to aerobic but not anaerobic cultures treated with shikimic acid or molybdate but not their combination. Results indicate that anaerobic adaptation of S. Typhimurium to sodium chlorate during pure culture is likely due to the selective propagation of low numbers of cells exhibiting spontaneous resistance to chlorate and this resistance is not reversible by molybdenum supplementation.  相似文献   
107.
Genome integrity is jeopardized each time DNA replication forks stall or collapse. Here we report the identification of a complex composed of MMS22L (C6ORF167) and TONSL (NFKBIL2) that participates in the recovery from replication stress. MMS22L and TONSL are homologous to yeast Mms22 and plant Tonsoku/Brushy1, respectively. MMS22L-TONSL accumulates at regions of ssDNA associated with distressed replication forks or at processed DNA breaks, and its depletion results in high levels of endogenous DNA double-strand breaks caused by an inability to complete DNA synthesis after replication fork collapse. Moreover, cells depleted of MMS22L are highly sensitive to camptothecin,?a topoisomerase I poison that impairs DNA replication progression. Finally, MMS22L and TONSL are necessary for the efficient formation of RAD51 foci after DNA damage, and their depletion impairs homologous recombination. These results indicate that MMS22L and TONSL are genome caretakers that stimulate the recombination-dependent repair of stalled or collapsed replication forks.  相似文献   
108.
109.
As a promiscuous redox partner, the biological role of cytochrome P450 reductase (CPR) depends significantly on protein–protein interactions. We tested a hypothesized CPR docking site by mutating D113, E115, and E116 to alanine and assaying activity toward various electron acceptors as a function of ionic strength. Steady-state cytochrome c studies demonstrated the mutations improved catalytic efficiency and decreased the impact of ionic strength on catalytic parameters when compared to wild type. Based on activity toward 7-ethoxy-4-trifluoro-methylcoumarin, CYP2B1 and CPR favored formation of an active CYP2B1•CPR complex and inactive (CYP2B1)2•CPR complex until higher ionic strength whereby only the binary complex was observed. The mutations increased dissociation constants only for the binary complex and suppressed the ionic strength effect. Studies with a non-binding substrate, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) suggest changes in activity toward cytochrome c and CYP2B1 reflect alterations in the route of electron transfer caused by the mutations. Electrostatic modeling of catalytic and binding parameters confirmed the importance of D113 and especially the double mutant E115 and E116 as mediators in forming charge–charge interactions between CPR and complex partners.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号