In mammals and yeast, tail‐anchored (TA) membrane proteins destined for the post‐translational pathway are safely delivered to the endoplasmic reticulum (ER) membrane by a well‐known targeting factor, TRC40/Get3. In contrast, the underlying mechanism for translocation of TA proteins in plants remains obscure. How this unique eukaryotic membrane‐trafficking system correctly distinguishes different subsets of TA proteins destined for various organelles, including mitochondria, chloroplasts and the ER, is a key question of long standing. Here, we present crystal structures of algal ArsA1 (the Get3 homolog) in a distinct nucleotide‐free open state and bound to adenylyl‐imidodiphosphate. This approximately 80‐kDa protein possesses a monomeric architecture, with two ATPase domains in a single polypeptide chain. It is capable of binding chloroplast (TOC34 and TOC159) and mitochondrial (TOM7) TA proteins based on features of its transmembrane domain as well as the regions immediately before and after the transmembrane domain. Several helices located above the TA‐binding groove comprise the interlocking hook‐like motif implicated by mutational analyses in TA substrate recognition. Our data provide insights into the molecular basis of the highly specific selectivity of interactions of algal ArsA1 with the correct sets of TA substrates before membrane targeting in plant cells. 相似文献
This study was conducted to evaluate the impacts of N fertilizer and landscape position on carbon dioxide (CO2) and methane (CH4) fluxes from a US Northern Great Plains landscape seeded to switchgrass (Panicum virgatum L.). The experimental design included three N levels (low, 0 kg N ha−1; medium, 56 kg N ha−1; and high, 112 kg N ha−1) replicated four times. The experiment was repeated at shoulder and footslope positions. Soil CO2 and CH4 fluxes were monitored once every 2 weeks from May 2010 to October 2012. The CO2 fluxes were 40% higher at the footslope than the shoulder landscape position, and CH4 fluxes were similar in both landscape positions. Soil CO2 and CH4 fluxes averaged over the sampling dates were not impacted by N rates. Seasonal variations showed highest CO2 release and CH4 uptake in summer and fall, likely due to warmer and moist soil conditions. Higher CH4 release was observed in winter possibly due to increased anaerobic conditions. However, year to year (2010–2012) variations in soil CO2 and CH4 fluxes were more pronounced than the variations due to the impact of landscape positions and N rates. Drought conditions reported in 2012, with higher annual temperature and lower soil moisture than long-term average, resulted in higher summer and fall CO2 fluxes (between 1.3 and 3 times) than in 2011 and 2010. These conditions also promoted a net CH4 uptake in 2012 in comparison to 2010 when there was net CH4 release. Results from this study conclude that landscape positions, air temperature, and soil moisture content strongly influenced soil CO2 fluxes, whereas soil moisture impacted the direction of CH4 fluxes (uptake or release). However, a comprehensive life cycle analysis would be appropriate to evaluate environmental impacts associated with switchgrass production under local environmental conditions. 相似文献
Interconversion reactions of cyclodextrin glycosyltransferase (CGTase) among cyclodextrin (CD) homologues were experimentally investigated using each CD as a substrate in an aqueous, two-phase-forming polymer solution of dextran and polyethylene glycol. Degradation rate of -CD was highest and that of -CD was lowest among -, - and -CD with Bacillus macerans CGTase. Degradation of each CD was accelerated with dextran, while decelerated with polyethylene glycol. 相似文献
High-quality rice reference genomes have accelerated the comprehensive identification of genome-wide variations and research on functional genomics and breeding. Tian-you-hua-zhan has been a leading hybrid in China over the past decade. Here, de novo genome assembly strategy optimization for the rice indica lines Huazhan (HZ) and Tianfeng (TF), including sequencing platforms, assembly pipelines and sequence depth, was carried out. The PacBio and Nanopore platforms for long-read sequencing were utilized, with the Canu, wtdbg2, SMARTdenovo, Flye, Canu-wtdbg2, Canu-SMARTdenovo and Canu-Flye assemblers. The combination of PacBio and Canu was optimal, considering the contig N50 length, contig number, assembled genome size and polishing process. The assembled contigs were scaffolded with Hi-C data, resulting in two “golden quality” rice reference genomes, and evaluated using the scaffold N50, BUSCO, and LTR assembly index. Furthermore, 42,625 and 41,815 non-transposable element genes were annotated for HZ and TF, respectively. Based on our assembly of HZ and TF, as well as Zhenshan97, Minghui63, Shuhui498 and 9311, comprehensive variations were identified using Nipponbare as a reference. The de novo assembly strategy for rice we optimized and the “golden quality” rice genomes we produced for HZ and TF will benefit rice genomics and breeding research, especially with respect to uncovering the genomic basis of the elite traits of HZ and TF.
With the advancement in lineage‐specific differentiation from human pluripotent stem cells (hPSCs), downstream cell separation has now become a critical step to produce hPSC‐derived products. Since differentiation procedures usually result in a heterogeneous cell population, cell separation needs to be performed either to enrich the desired cell population or remove the undesired cell population. This article summarizes recent advances in separation processes for hPSC‐derived cells, including the standard separation technologies, such as magnetic‐activated cell sorting, as well as the novel separation strategies, such as those based on adhesion strength and metabolic flux. Specifically, the downstream bioprocessing flow and the identification of surface markers for various cell lineages are discussed. While challenges remain for large‐scale downstream bioprocessing of hPSC‐derived cells, the rational quality‐by‐design approach should be implemented to enhance the understanding of the relationship between process and the product and to ensure the safety of the produced cells. 相似文献
The splicing of many alternative exons in the precursor messenger RNA (pre-mRNA) is regulated by extracellular factors but the underlying molecular bases remain unclear. Here we report the differential regulation of Bcl-x pre-mRNA splicing by extracellular factors and their distinct requirements for pre-mRNA elements. In K562 leukemia cells, treatment with interleukin-6 (IL-6) or granulocyte-macrophage colony stimulating factor (GM-CSF) reduced the proportion of the Bcl-xL variant mRNA while treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) had no effect. In U251 glioma cells, however, TPA efficiently increased the Bcl-xL level. These regulations were also seen for a transfected splicing reporter mini-gene. Further analyses of deletion mutants indicate that nucleotides 1-176 of the downstream intron are required for the IL-6 effect, whereas additional nucleotides 177-284 are essential for the GM-CSF effect. As for the TPA effect, only nucleotides 1-76 are required in the downstream intron. Thus, IL-6, GM-CSF and TPA differentially regulate Bcl-x splicing and require specific intronic pre-mRNA sequences for their respective effects. 相似文献
Plant regeneration through somatic embryogenesis of Areca catechu L. was established using leaf, root and stem segments as explants. Embryogenic callus was induced and maintained on medium
supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) or 3,6-dichloro-2-methoxybenzoic acid (dicamba) at concentrations
2, 4, 6 and 8 mg dm−3 in darkness. Somatic embryos were found on primary callus in the presence of 2 and 4 mg dm−3 dicamba and during subculture on 2 – 8 mg dm−3 2,4-D or 2 – 4 mg dm−3 dicamba-containing media. Plantlet conversion from embryos was successfully achieved on growth regulator-free medium. The
plants grew well when transplanted to containers in shaded greenhouse. 相似文献
Initial functional studies have demonstrated that RNA‐binding motif protein 10 (RBM10) can promote apoptosis and suppress cell proliferation; however, the results of several studies suggest a tumour‐promoting role for RBM10. Herein, we assessed the involvement of RBM10 in lung adenocarcinoma cell proliferation and explored the potential molecular mechanism. We found that, both in vitro and in vivo, RBM10 overexpression suppresses lung adenocarcinoma cell proliferation, while its knockdown enhances cell proliferation. Using complementary DNA microarray analysis, we previously found that RBM10 overexpression induces significant down‐regulation of RAP1A expression. In this study, we have confirmed that RBM10 decreases the activation of RAP1 and found that EPAC stimulation and inhibition can abolish the effects of RBM10 knockdown and overexpression, respectively, and regulate cell growth. This effect of RBM10 on proliferation was independent of the MAPK/ERK and P38/MAPK signalling pathways. We found that RBM10 reduces the phosphorylation of CREB via the AKT signalling pathway, suggesting that RBM10 exhibits its effect on lung adenocarcinoma cell proliferation via the RAP1/AKT/CREB signalling pathway. 相似文献