首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79414篇
  免费   5925篇
  国内免费   5223篇
  90562篇
  2024年   164篇
  2023年   1079篇
  2022年   2502篇
  2021年   4257篇
  2020年   2779篇
  2019年   3424篇
  2018年   3301篇
  2017年   2412篇
  2016年   3404篇
  2015年   5045篇
  2014年   5772篇
  2013年   6228篇
  2012年   7319篇
  2011年   6452篇
  2010年   3891篇
  2009年   3498篇
  2008年   3919篇
  2007年   3489篇
  2006年   3041篇
  2005年   2489篇
  2004年   2064篇
  2003年   1745篇
  2002年   1495篇
  2001年   1309篇
  2000年   1272篇
  1999年   1165篇
  1998年   687篇
  1997年   678篇
  1996年   687篇
  1995年   631篇
  1994年   557篇
  1993年   391篇
  1992年   588篇
  1991年   445篇
  1990年   420篇
  1989年   292篇
  1988年   254篇
  1987年   239篇
  1986年   171篇
  1985年   197篇
  1984年   109篇
  1983年   119篇
  1982年   73篇
  1981年   59篇
  1980年   40篇
  1979年   63篇
  1977年   30篇
  1974年   39篇
  1973年   34篇
  1972年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The objective of this study is to observe the effect of high-mobility group protein B1 A Box (HMGB1 A) box on lung injury in mice with acute pancreatitis and its effect on the level of high-mobility group protein B1 (HMGB1) in lung, to explore the mechanism. A total of 60 male Institute of Cancer Research mice were randomly divided into control group (n = 30) and treatment group (n = 30). Severe acute pancreatitis mice model was induced by 20% L-Arg intraperitoneal injection. The recombination HMGB1 A box was used in treatment after modeling. All the mice were killed under anesthesia at 24 and 48 h after the modeling injection. The level of HMGB1 and activity of myeloperoxidase (MPO) in lung were measured. The pathological changes of lung were observed. The level of HMGB1 in lung of A box treatment group decreased more significantly 24 h and 48 h after modeling compared with control group. The activity of MPO in lung of A box treatment group decreased more significantly 24 h after modeling compared with control group. The lung tissue pathologic score of A box treatment group decreased more significantly 48 h after modeling compared with control group. HMGB1 expression levels in the lungs were positively related to histological score of injured lung in acute pancreatitis. It indicates that HMGB1 A box is remarkably protective to lung injury induced by acute pancreatitis.  相似文献   
992.
The circulatory system is the first organ system that develops during embryogenesis, and is essential for embryo viability and survival. Crucial for developing a functional vasculature are the specification of arterial-venous identity in vessels and the formation of a hierarchical branched vascular network. Sprouting angiogenesis, intussusception, and flow driven remodeling events collectively contribute to establishing the vascular architecture. At the molecular level, arterial-venous identity and branching are regulated by genetically hardwired mechanisms involving Notch, vascular endothelial growth factor and neural guidance molecule signaling pathways, modulated by hemodynamic factors. MicroRNAs are small, non-coding RNAs that act as silencers to fine-tune the gene expression profile. MicroRNAs are known to influence cell fate decisions, and microRNA expression can be controlled by blood flow, thus placing microRNAs potentially at the center of the genetic cascades regulating vascular differentiation. In the present review, we summarize current progress regarding microRNA functions in blood vessel development with an emphasis on studies performed in zebrafish and mouse models.  相似文献   
993.
近年来, 生物多样性监测网络的建设得到广泛重视, 全球、地区或国家生物多样性观测网不断组建。生物多样性观测的理论框架得到发展, 提出了生物多样性核心监测指标(Essential Biodiversity Variables, EBV)。鱼类多样性监测的理论框架包含于生物多样性核心监测指标之内, 在遗传、物种、生态系统等多层次进行。基于鱼类监测提出的生物完整性指数(index of biotic integrity, IBI)强调不同物种的生态功能, 可以综合反映群落结构和功能的变化, 得到广泛应用。鱼类多样性的监测方法是传统网具和现代水声学等方法的结合。监测结果的分析可以进行简单的指数比较, 也可以进行长期的趋势分析, 寻找关键节点, 探讨宏观生态格局的变化。中国内陆水体鱼类多样性监测网隶属于中国生物多样性监测与研究网络, 拟选取长江、黄河、黑龙江、珠江、澜沧江、怒江、塔里木河及青海湖8大流域, 对25个重要区域和24个重点物种(类群)进行监测, 从重要区域鱼类群落结构、重点物种(类群)种群动态和个体生物学特征、遗传多样性、早期资源等不同层次, 全面监测我国内陆水体鱼类生物多样性状况。  相似文献   
994.
Phenotypic modulation of vascular smooth muscle cells (VSMCs) is involved in the pathophysiological processes of the intracranial aneurysms (IAs). Although shear stress has been implicated in the proliferation, migration, and phenotypic conversion of VSMCs, the molecular mechanisms underlying these events are currently unknown. In this study, we investigated whether shear stress(SS)-induced VSMC phenotypic modulation was mediated by autophagy involved in adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway. The results show that shear stress could inhibit the expression of key VSMC contractile genes and induce pro-inflammatory/matrix-remodeling genes levels, contributing to VSMCs phenotypic switching from a contractile to a synthetic phenotype. More importantly, Shear stress also markedly increased the levels of the autophagy marker microtubule-associated protein light chain 3-II (LC3II), Beclin-1, and p62 degradation. The autophagy inhibitor 3-methyladenine (3-MA) significantly blocked shear-induced phenotypic modulation of VSMCs. To further explore the molecular mechanism involved in shear-induced autophagy, we found that shear stress could activate AMPK/mTOR/ULK1 signaling pathway in VSMCs. Compound C, a pharmacological inhibitor of AMPK, significantly reduced the levels of p-AMPK and p-ULK, enhanced p-mTOR level, and finally decreased LC3II and Beclin-1 level, which suggested that activated AMPK/mTOR/ULK1 signaling was related to shear-mediated autophagy. These results indicate that shear stress promotes VSMC phenotypic modulation through the induction of autophagy involved in activating the AMPK/mTOR/ULK1 pathway.  相似文献   
995.
Advances in microarray, RNA‐seq and omics techniques, thousands of long non‐coding RNAs (lncRNAs) with unknown functions have been discovered. LncRNAs have presented a diverse perspective on gene regulation in diverse biological processes, especially in human immune response. Macrophages participate in the whole phase of immune inflammatory response. They are able to shape their phenotype and arouse extensive functional activation after receiving physiological and pathological stimuli. Emerging studies indicated that lncRNAs participated in the gene regulatory network during complex biological processes of macrophage, including macrophage‐induced inflammatory responses. Here, we reviewed the existing knowledges of lncRNAs in the processes of macrophage development and polarization, and their roles in several different inflammatory diseases. Specifically, we focused on how lncRNAs function in macrophage, which might help to discover some potential therapeutic targets and diagnostic biomarkers.  相似文献   
996.
The microRNAs (miRNAs) are involved in multiple pathological processes among various types of tumors. However, the functions of miRNAs in benign brain tumors are largely unexplored. In order to explore the pathogenesis of the invasiveness in non-functional pituitary adenoma (NFPA), the miRNAs expression profile was analyzed between invasive and non-invasive non-functional pituitary adenoma by miRNAs microarray. Six most significant differentially expressed miRNAs were identified including four upregulated miRNAs hsa-miR-181b-5p, hsa-miR-181d, hsa-miR-191-3p, and hsa-miR-598 and two downregulated miRNAs hsa-miR-3676-5p and hsa-miR-383. The functions and corresponding signaling pathways of differentially expressed miRNAs were investigated by bioinformatics techniques, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The result of GO analysis indicates regulation of voltage-gated potassium channel activity, positive regulation of sodium ion transport, positive regulation of GTPase activity, negative regulation of Notch signaling pathway, etc. KEGG pathway reveals a series of biological processes, including prolactin signaling pathway, endocrine and other factor-regulated calcium reabsorption, fatty acid metabolism, neuroactive ligand-receptor interaction, etc. The miRNAs hsa-miR-181a-5p was verified by quantitative real-time PCR, and the expression level was in accordance with the microarray result. Our result can provide the evidence on featured miRNAs which play a prominent role in pituitary adenoma as effective biomarkers and therapeutic targets in the future.  相似文献   
997.
目的研究中华蟾蜍消化道酸性磷酸酶(ACP)、碱性磷酸酶(ALP)、腺苷三磷酸酶(ATPase)、非特异性酯酶(NSE)、过氧化物酶(POX)和琥珀酸脱氢酶(SDH)等6种酶的分布。方法在消化道的8个部位取材,采用冰冻切片技术、石蜡切片技术、酶的组织化学方法和光密度定量分析。结果 ACP主要分布于胃贲门中贲门腺部,十二指肠和回肠中酶反应呈弱阳性。ALP主要分布于食管、十二指肠至回肠的粘膜上皮,十二指肠酶活性最高。ATPase在消化道各部位均有分布,胃中胃腺部和回肠粘膜上皮酶活性显著较高(P0.05)。NSE和POX在整个消化道粘膜上皮和粘膜固有层均有分布,胃各部位酶活性显著较低(P0.05)。SDH除在食管和直肠酶活性显著较低外,其它部位均有大量分布,十二指肠和回肠酶活性显著较高(P0.05)。结论中华蟾蜍消化道粘膜6种酶的分布同其它动物有相似之处,也有其自身特点。6种酶在消化道中的分布与消化道各部位的生理机能密切相关。  相似文献   
998.
In order to elucidate the response of the ascorbate-glutathione (ASC-GSH) cycle to drought stress, the activities of antioxidant enzymes and the levels of molecules involved in the ASC-GSH metabolism were studied in Trifolium repens L. seedlings subjected to PEG-induced water deficit. Compared to the control, the contents of H2O2, thiobarbituric acid reactive substances (TBARS), ascorbate (ASC), dehydroascorbate (DHA), and glutathione disulfide (GSSG) increased in PEG-treated seedlings, whereas the glutathione (GSH) content kept constant during the drought period. Further more, the ASC/DHA and GSH/GSSG ratios decreased in the presence of PEG. Except for that of monodehydroascorbate reductase (MDHAR), the activities of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were up-regulated during water deficit, and the increases in APX and DHAR activities were much higher than those in GR activity. These data indicate that fluctuations in the ASC-GSH metabolism resulted from PEG treatment may have a positive effect on drought stress mitigation in T. repens.  相似文献   
999.
1000.
Wang X  Song Y  Li J  Liu H  Xu X  Lai R  Zhang K 《Peptides》2007,28(10):2069-2074
While conducting experiments to investigate antimicrobial peptides of amphibians living in the Yunnan-Guizhou region of southwest China, a new family of antimicrobial peptides was identified from skin secretions of the Yunnan frog, Rana pleuraden. Members of the new peptide family named pleurain-As are composed of 26 amino acids with a unique N-terminal sequence (SIIT) and a disulfide-bridged heptapeptide sequence (CRLYNTC). By BLAST search, pleurain-As had no significant similarity to any known peptides. Native and synthetic peptides showed antimicrobial activities against tested microorganisms including Gram-negative and Gram-positive bacteria and fungi. Twenty different cDNAs encoding pleurain-As were cloned from the skin cDNA library of R. pleuraden. The precursors of pleurain-As are composed of 69 amino acid residues including predicted signal peptides, acidic propieces, and cationic mature antimicrobial peptides. The preproregion of pleurain-A precursor comprises a hydrophobic signal peptide of 22 residues followed by an 18 residue acidic propiece which terminates by a typical prohormone processing signal Lys-Arg. The preproregions of precursors are very similar to other amphibian antimicrobial peptide precursors but the mature pleurain-As are different from other antimicrobial peptide families. The remarkable similarity of preproregions of precursors that give rise to very different antimicrobial peptides in distantly related frog species suggests that the corresponding genes form a multigene family originating from a common ancestor. Furthermore, pleurain-As could exert antimicrobial capability against Helicobacter pylori. This is the first report of naturally occurring peptides with anti-H. pylori activity from Rana amphibians.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号