首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   6篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   6篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   4篇
  2014年   10篇
  2013年   9篇
  2012年   11篇
  2011年   17篇
  2010年   3篇
  2009年   9篇
  2008年   10篇
  2007年   18篇
  2006年   4篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有153条查询结果,搜索用时 750 毫秒
121.
The stratification of patients with acute lymphoblastic leukemia (ALL) into treatment risk groups based on quantification of minimal residual disease (MRD) after induction therapy is now well accepted but the relapse rate of about 20% in intermediate risk patients remains a challenge. The purpose of this study was to further improve stratification by MRD measurement at an earlier stage. MRD was measured in stored day 15 bone marrow samples for pediatric patients enrolled on ANZCHOG ALL8 using Real-time Quantitative PCR to detect immunoglobulin and T-cell receptor gene rearrangements with the same assays used at day 33 and day 79 in the original MRD stratification. MRD levels in bone marrow at day 15 and 33 were highly predictive of outcome in 223 precursor B-ALL patients (log rank Mantel-Cox tests both P<0.001) and identified patients with poor, intermediate and very good outcomes. The combined use of MRD at day 15 (≥1×10−2) and day 33 (≥5×1−5) identified a subgroup of medium risk precursor B-ALL patients as poor MRD responders with 5 year relapse-free survival of 55% compared to 84% for other medium risk patients (log rank Mantel-Cox test, P = 0.0005). Risk stratification of precursor B-ALL but not T-ALL could be improved by using MRD measurement at day 15 and day 33 instead of day 33 and day 79 in similar BFM-based protocols for children with this disease.  相似文献   
122.
Tuberculosis is an under-recognized yet catastrophic health problem, particularly in developing countries. The HIV pandemic has served to increase the number of susceptible individuals, and multidrug-resistance and poor socioeconomic conditions also augment the prevalence and the consequences of the disease. To control the disease and its spread, it is vital that tuberculosis diagnostics are accurate and rapid. Whereas microscopy and culture have several limitations (low sensitivity is a problem for the former, while the latter has a delayed turnaround time), PCR-based techniques targeting regions of the Mycobacterium tuberculosis genome such as IS6110 have proved to be useful. The purpose of this review is to assess the use of PCR-RFLP, nested PCR and real-time PCR protocols and the choice of target regions for the detection of M. tuberculosis. Real-time PCR for the detection of M. tuberculosis target genes in clinical specimens has contributed to improving diagnosis and epidemiologic surveillance in the past decade. However, targeting one genome sequence such as IS6110 may not by itself be sufficiently sensitive to reach 100% diagnosis, especially in the case of pulmonary tuberculosis. Additional testing for target genome sequences such as hsp65 seems encouraging. An interesting approach would be a multiplex real-time PCR targeting both IS6110 and hsp65 to achieve comprehensive and specific molecular diagnosis. This technology needs development and adequate field testing before it becomes the acceptable gold standard for diagnosis.  相似文献   
123.
Designed octapeptides Boc-Leu-Val-Val-Aib-(D)Xxx-Leu-Val-Val-OMe ((D)Xxx = (D)Ala, 3a;(D)Val, 3c and (D)Pro, 5a) and Boc-Leu-Phe-Val-Aib-(D)Ala-Leu-Phe-Val-OMe (3b) have been investigated to construct models of a stable type I' beta-turn nucleated hairpin and to generate systems for investigating helix-hairpin conformational transitions. Peptide 5a, which contains a central Aib-(D)Pro segment, is shown to adopt a stable type I' beta-turn nucleated hairpin structure, stabilized by four cross-strand hydrogen bonds. The stability of the structure in diverse solvents is established by the observation of all diagnostic NOEs expected in a beta-hairpin conformation. Replacement of (D)Pro5 by (D)Ala/(D)Val (3a-c) results in sequences that form beta-hairpins in hydrogen bonding solvents like CD(3)OH and DMSO-d(6). However, in CDCl(3) evidence for population of helical conformations is obtained. Peptide 6b (Boc-Leu-Phe-Val-Aib-Aib-Leu-Phe-Val-OMe), which contains a centrally positioned Aib-Aib segment, provides a clear example of a system, which exhibits a helical conformation in CDCl(3) and a significant population of both helices and hairpins in CD(3)OH and DMSO-d(6). The coexistence of multiple conformations is established by the simultaneous observation of diagnostic NOEs. Control over stereochemistry of the central beta-turn permits generation of models for robust beta-hairpins and also for the construction of systems that may be used to probe helix-hairpin conformational transitions.  相似文献   
124.
Orientia tsutsugamushi, a cause of scrub typhus is emerging as an important pathogen in several parts of the tropics. The control of this infection relies on rapid diagnosis, specific treatment, and prevention through vector control. Development of a vaccine for human use would be very important as a public health measure. Antibody and T-cell response have been found to be important in the protection against scrub typhus. This study was undertaken to predict the peptide vaccine that elicits both B- and T-cell immunity. The outer-membrane protein, 47-kDa high-temperature requirement A was used as the target protein for the identification of protective antigen(s). Using BepiPred2 program, the potential B-cell epitope PNSSWGRYGLKMGLR with high conservation among O. tsutsugamushi and the maximum surface exposed residues was identified. Using IEDB, NetMHCpan, and NetCTL programs, T-cell epitopes MLNELTPEL and VTNGIISSK were identified. These peptides were found to have promiscuous class-I major histocompatibility complex (MHC) binding affinity to MHC supertypes and high proteasomal cleavage, transporter associated with antigen processing prediction, and antigenicity scores. In the I-TASSER generated model, the C-score was −0.69 and the estimated TM-score was 0.63 ± 0.14. The location of the epitope in the 3D model was external. Therefore, an antibody to this outer-membrane protein epitope could opsonize the bacterium for clearance by the reticuloendothelial system. The T-cell epitopes would generate T-helper function. The B-cell epitope(s) identified could be evaluated as antigen(s) in immunodiagnostic assays. This cocktail of three peptides would elicit both B- and T-cell immune response with a suitable adjuvant and serve as a vaccine candidate.  相似文献   
125.
Cathodal moving protein components were identified in agarose gel electrophoresis of the Veronal buffer extract of a non-motile strain of S. typhi (8393, Colindale). Rabbit antiserum was raised against these cationic proteins; it had both agglutinating and precipitating activity. A total of 80 salmonella strains belonging to serogroups A, B, C1, C2, D, E1 and E2 including 26 S. typhi and 10 S. paratyphi A were tested against this antiserum in a slide agglutination test; all strains were agglutinated. Among 94 other bacterial strains tested, the antiserum agglutinated all 16 strains of Shigella flexneri, 2 of 5 Shigella sonnei, 5 of 34 E. coli and 1 of 8 Citrobacter species. These results show that there is antigenic sharing of the non-flagellar proteins of S. typhi with many other salmonellae as well as with some shigellae and E. coli.  相似文献   
126.
Phosphorylation and dephosphorylation of PKCs can regulate their activity, stability and function. We have previously shown that downregulation of PKCδ by tumor promoting phorbol esters was compromised when HeLa cells acquired resistance to cisplatin (HeLa/CP). In the present study, we have used these cells to understand the mechanism of PKCδ downregulation. A brief treatment of HeLa cells with phorbol 12,13-dibutyrate (PDBu) induced phosphorylation of PKCδ at the activation loop (Thr505), turn motif (Ser643), hydrophobic motif (Ser662) and Tyr-311 sites to a greater extent in HeLa/CP cells compared to HeLa cells. Prolonged treatment with PDBu led to downregulation of PKCδ in HeLa but not in HeLa/CP cells. The PKC inhibitor Gö 6983 inhibited PDBu-induced downregulation of PKCδ, decreased Thr505 phosphorylation and increased PKCδ tyrosine phosphorylation at Tyr-311 site. However, knockdown of c-Abl, c-Src, Fyn and Lyn had little effect on PKCδ downregulation and Tyr311 phosphorylation. Pretreatment with the phosphatidylinositol 3-kinase inhibitor Ly294002 and mTOR inhibitor rapamycin restored the ability of PDBu to downregulate PKCδ in HeLa/CP cells. Knockdown of mTOR and rictor but not raptor facilitated PKCδ downregulation. Depletion of PKCε also enhanced PKCδ downregulation by PDBu. These results suggest that downregulation of PKCδ is regulated by PKCε and mammalian target of rapamycin complex 2 (mTORC2).  相似文献   
127.
Increases in the second messenger cAMP are associated with receptor-mediated ATP release from erythrocytes. In other signaling pathways, cAMP-specific phosphodiesterases (PDEs) hydrolyze this second messenger and thereby limit its biological actions. Although rabbit and human erythrocytes possess adenylyl cyclase and synthesize cAMP, their PDE activity is poorly characterized. It was reported previously that the prostacyclin analog iloprost stimulated receptor-mediated increases in cAMP in rabbit and human erythrocytes. However, the PDEs that hydrolyze erythrocyte cAMP synthesized in response to iloprost were not identified. PDE3 inhibitors were reported to augment increases in cAMP stimulated by prostacyclin analogs in platelets and pulmonary artery smooth muscle cells. Additionally, PDE3 activity was identified in embryonic avian erythrocytes, but the presence of this PDE in mammalian erythrocytes has not been investigated. Here, using Western blot analysis, we determined that PDE3B is a component of rabbit and human erythrocyte membranes. In addition, we report that the preincubation of rabbit and human erythrocytes with the PDE3 inhibitors milrinone and cilostazol potentiates iloprost-induced increases in cAMP. In addition, cilostamide, the parent compound of cilostazol, potentiated iloprost-induced increases in cAMP in human erythrocytes. These findings demonstrate that PDE3B is present in rabbit and human erythrocytes and are consistent with the hypothesis that PDE3 activity regulates cAMP levels associated with a signaling pathway activated by iloprost in these cells.  相似文献   
128.
The origin recognition complex (ORC) has an important function in determining the initiation sites of DNA replication. In higher eukaryotes, ORC lacks sequence-specific DNA binding, and the mechanisms of ORC recruitment and origin determination are poorly understood. ORC is recruited with high efficiency to the Epstein-Barr virus origin of plasmid replication (OriP) through a complex mechanism involving interactions with the virus-encoded EBNA1 protein. We present evidence that ORC recruitment to OriP and DNA replication function depends on RGG-like motifs, referred to as LR1 and LR2, in the EBNA1 amino-terminal domain. Moreover, we show that LR1 and LR2 recruitment of ORC is RNA dependent. HMGA1a, which can functionally substitute for LR1 and LR2 domain, can also recruit ORC in an RNA-dependent manner. EBNA1 and HMGA1a RGG motifs bound to structured G-rich RNA, as did ORC1 peptides, which interact with EBNA1. RNase A treatment of cellular chromatin released a fraction of the total ORC, suggesting that ORC association with chromatin, and possibly cellular origins, is stabilized by RNA. We propose that structural RNA molecules mediate ORC recruitment at some cellular and viral origins, similar to OriP.  相似文献   
129.
Little is known about the intracellular events that occur following the initial inhibition of Mycobacterium tuberculosis by the first-line antituberculosis drugs isoniazid (INH) and ethambutol (EMB). Understanding these pathways should provide significant insights into the adaptive strategies M. tuberculosis undertakes to survive antibiotics. We have discovered that the M. tuberculosis iniA gene (Rv 0342) participates in the development of tolerance to both INH and EMB. This gene is strongly induced along with iniB and iniC (Rv 0341 and Rv 0343) by treatment of Mycobacterium bovis BCG or M. tuberculosis with INH or EMB. BCG strains overexpressing M. tuberculosis iniA grew and survived longer than control strains upon exposure to inhibitory concentrations of either INH or EMB. An M. tuberculosis strain containing an iniA deletion showed increased susceptibility to INH. Additional studies showed that overexpression of M. tuberculosis iniA in BCG conferred resistance to ethidium bromide, and the deletion of iniA in M. tuberculosis resulted in increased accumulation of intracellular ethidium bromide. The pump inhibitor reserpine reversed both tolerance to INH and resistance to ethidium bromide in BCG. These results suggest that iniA functions through an MDR-pump like mechanism, although IniA does not appear to directly transport INH from the cell. Analysis of two-dimensional crystals of the IniA protein revealed that this predicted transmembrane protein forms multimeric structures containing a central pore, providing further evidence that iniA is a pump component. Our studies elucidate a potentially unique adaptive pathway in mycobacteria. Drugs designed to inhibit the iniA gene product may shorten the time required to treat tuberculosis and may help prevent the clinical emergence of drug resistance.  相似文献   
130.
The Snm secretion system is a crucial virulence determinant of Mycobacterium tuberculosis. Genes encoding all known components of this alternative secretion pathway are clustered at the same genetic locus, known as RD1. Here, we show that a mutant M. tuberculosis strain containing a transposon insertion in the Rv3615c gene, which is situated outside the RD1 locus, results in loss of Snm secretion. Complementation analysis revealed that both Rv3615c and the downstream gene Rv3614c are required for Snm secretion. Thus, we have renamed the two genes snm9 and snm10 respectively. The snm9::Tn mutant phenocopies bona fide snm mutants, exhibiting attenuation in mice, macrophage growth defects and failure to suppress cytokine induction. Furthermore, yeast two-hybrid analysis revealed a physical interaction between Snm10 and Snm7 (Rv3882c), suggesting that Snm10 may function in complex with other Snm proteins during secretion. Thus, snm9 and snm10 are the first genes located outside the RD1 locus identified as critical components of Snm secretion. These data indicate that Snm secretion consists of an elaborate network of interactions that likely arose from multiple duplication events during the evolution of M. tuberculosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号