首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5364篇
  免费   229篇
  国内免费   13篇
  5606篇
  2023年   55篇
  2022年   146篇
  2021年   310篇
  2020年   128篇
  2019年   173篇
  2018年   205篇
  2017年   153篇
  2016年   218篇
  2015年   262篇
  2014年   298篇
  2013年   430篇
  2012年   375篇
  2011年   393篇
  2010年   215篇
  2009年   192篇
  2008年   220篇
  2007年   216篇
  2006年   195篇
  2005年   164篇
  2004年   131篇
  2003年   96篇
  2002年   98篇
  2001年   65篇
  2000年   66篇
  1999年   56篇
  1998年   34篇
  1997年   15篇
  1996年   22篇
  1995年   18篇
  1993年   18篇
  1992年   35篇
  1991年   47篇
  1990年   42篇
  1989年   35篇
  1988年   30篇
  1987年   44篇
  1986年   33篇
  1985年   37篇
  1984年   31篇
  1983年   21篇
  1982年   19篇
  1981年   14篇
  1980年   15篇
  1979年   25篇
  1978年   24篇
  1977年   13篇
  1976年   13篇
  1975年   14篇
  1974年   14篇
  1973年   23篇
排序方式: 共有5606条查询结果,搜索用时 0 毫秒
191.
Tuteja N  Ahmad P  Panda BB  Tuteja R 《Mutation research》2009,681(2-3):134-149
Plant cells are constantly exposed to environmental agents and endogenous processes that inflict damage to DNA and cause genotoxic stress, which can reduce plant genome stability, growth and productivity. Plants are most affected by solar UV-B radiation, which damage the DNA by inducing the formation of two main UV photoproducts such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). Reactive oxygen species (ROS) are also generated extra- or intra-cellularly, which constitute yet another source of genotoxic stress. As a result of this stress, the cellular DNA-damage responses (DDR) are activated, which transiently arrest the cell cycle and allow cells to repair DNA before proceeding into mitosis. DDR requires the activation of Ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) genes, which regulate the cell cycle and transmit the damage signals to downstream effectors of cell-cycle progression. Since genomic protection and stability are fundamental to ensure and sustain plant diversity and productivity, therefore, repair of DNA damages is essential. In plants the bulky DNA lesions, CPDs and 6-4PPs, are repaired by a simple and error-free mechanism: photoreactivation, which is a light-dependent mechanism and requires CPD or 6-4PP specific photolyases. In addition to this direct repair process, the plants also have sophisticated light-independent general repair mechanisms, such as the nucleotide excision repair (NER) and base excision repair (BER). The completed plant genome sequences reveal that most of the genes involved in NER and BER are present in higher plants, which suggests that the network of in-built DNA-damage repair mechanisms is conserved. This article describes the insight underlying the DNA damage and repair pathways in plants. The comet assay to measure the DNA damage and the role of DNA repair helicases such as XPD and XPB are also covered.  相似文献   
192.
By comparing changes in enzyme activity with changes in spectral features for stem bromelain (EC.3.4.22.32) in the absence and presence of urea, Guanidine hydrochloride and ethanol; four intermediate states could be identified: two activity-enhanced state obtained in the presence of 5 M urea and 2 M GnHCl, termed X and X', respectively, and a third, similarly active state closely resembling the native protein in the presence of 8-9 M urea, termed Y. The enhanced activity of these states is due to local conformational changes accompanied by increased dynamics in the active site. Further, the enzyme does not lose its activity after substantial tertiary structure changes in 8-9 M urea (Y state), suggesting that active site containing domain is more resistant to chemical denaturation than the other structural domain. This makes stem bromelain and in general cysteine proteases an exception to the hypothesis that active site is the most labile part of enzyme.  相似文献   
193.
The upper Ordovician succession of Jordan was located 60°S, less than 100 km from the Hirnantian ice sheet margin. New graptolite dates indicate glaciation ended in Jordan in the late Hirnantian (persculptus Biozone). The succession records two glacial advances within the Ammar Formation and the subsequent deglaciations. Organic-rich black shales (Batra Formation) form part of the final deglacial transgressive succession that in-filled an existing low stand glacial continental shelf topography. The base of the black shale is coincident with the maximum flooding surface. During transgression, interfluves and sub-basin margins were breached and black shale deposition expanded rapidly across the region. The top of the black shales coincides with peak highstand. The “expanding puddle model” (sensu Wignall) for black shale deposition, adapted for the peri-glacial setting, provides the best explanation for this sequence of events.

We propose a hypothesis in which anoxic conditions were initiated beneath the halocline in a salinity stratified water column; a fresher surface layer resulted from ice meltwater generated during early deglaciation. During the initial stages of marine incursion, nutrients in the monimolimnion were isolated from the euphotic zone by the halocline. Increasing total organic carbon (TOC) and δ13Corg up section indicates the organic carbon content of the shales was controlled mainly by increasing bioproductivity in the mixolimnion (the Strakhov model). Mixolimnion nutrient levels were sustained by a continual and increasing supply of meltwater-derived nutrients, modulated by obliquity changes in high latitude insolation. Anoxia was sustained over tens to hundreds of thousands of years. The formation of black shales on the north Gondwana shelf was little different to those observed in modern black shale environments, suggesting that it was the nature of the Ordovician seas that pre-disposed them to anoxia.  相似文献   

194.
195.

Background  

Efficient delivery of anticancer chemotherapies such as paclitaxel (PTX) can improve treatment strategy in a variety of tumors such as breast and ovarian cancers. Accordingly, researches on polymeric nanomicelles continue to find suitable delivery systems. However, due to biocompatibility concerns, a few micellar nanoformulations have exquisitely been translated into clinical uses. Here, we report the synthesis of novel water-soluble nanomicelles using bioactive polyurethane (PU) polymer and efficient delivery of PTX in the human breast cancer MCF-7 cells.  相似文献   
196.
Mutations in EDNRB gene have been reported to cause Waardenburg-Shah syndrome (WS4) in humans. We investigated 17 patients with WS4 for identification of mutations in EDNRB gene using PCR and direct sequencing technique. Four genomic mutations were detected in four patients; a G to C transversion in codon 335 (S335C) in exon 5 and a transition of T to C in codon (S361L) in exon 5, a transition of A to G in codon 277 (L277L) in exon 4, a non coding transversion of T to A at −30 nucleotide position of exon 5. None of these mutations were found in controls. One of the patients harbored two novel mutations (S335C, S361L) in exon 5 and one in Intronic region (−30exon5 A>G). All of the mutations were homozygous and novel except the mutation observed in exon 4. In this study, we have identified 3 novel mutations in EDNRB gene associated with WS4 in Pakistani patients.  相似文献   
197.
We have analyzed, by means of density functional theory calculations and the embedded cluster model, the adsorption and spin-state properties of Cr, Ni, Mo, and Pt deposited on a MgO crystal. We considered deposition at the Mg2+ site of a defect-free surface and at Li+ and Na+ sites of impurity-containing surfaces. To avoid artificial polarization effects, clusters of moderate sizes with no border anions were embedded in simulated Coulomb fields that closely approximate the Madelung fields of the host surfaces. The interaction between a transition metal atom and a surface results from a competition between Hund's rule for the adsorbed atom and the formation of a chemical bond at the interface. We found that the adsorption energies of the metal atoms are significantly enhanced by the cation impurities, and the adsorption energies of the low-spin states of spin-quenched complexes are always more favorable than those of the high-spin states. Spin polarization effects tend to preserve the spin states of the adsorbed atoms relative to those of the isolated atoms. The metal–support interactions stabilize the low-spin states of the adsorbed metals with respect to the isolated metals, but the effect is not always enough to quench the spin. Spin quenching occurs for Cr and Mo complexes at the Mg2+ site of the pure surface and at Li+ and Na+ sites of the impurity-containing surfaces. Variations of the spin-state properties of free metals and of the adsorption and spin-state properties of metal complexes are correlated with the energies of the frontier orbitals. The electrostatic potential energy curves provide further understanding of the nature of the examined properties.  相似文献   
198.

Background

Based on the ethnomedicinal uses and the effective outcomes of natural products in various diseases, this study was designed to evaluate Isodon rugosus as possible remedy in oxidative stress, alzheimer’s and other neurodegenerative diseases. Acetylecholinestrase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of crude methanolic extract (Ir.Cr), resultant fractions (n-hexane (Ir.Hex), chloroform (Ir.Cf), ethyl acetate (Ir.EtAc), aqueous (Ir.Aq)), flavonoids (Ir.Flv) and crude saponins (Ir.Sp) of I. rugosus were investigated using Ellman’s spectrophotometric method. Antioxidant potential of I. rugosus was determined using DPPH, H2O2 and ABTS free radicals scavenging assays. Total phenolic and flavonoids contents of plant extracts were determined and expressed in mg GAE/g dry weight and mg RTE/g of dry sample respectively.

Results

Among different fractions Ir.Flv and Ir.Cf exhibited highest inhibitory activity against AChE (87.44 ± 0.51, 83.73 ± 0.64%) and BChE (82.53 ± 0.71, 88.55 ± 0.77%) enzymes at 1 mg/ml with IC50 values of 45, 50 for AChE and 40, 70 μg/ml for BChE respectively. Activity of these fractions were comparable to galanthamine causing 96.00 ± 0.30 and 88.61 ± 0.43% inhibition of AChE and BChE at 1 mg/ml concentration with IC50 values of 20 and 47 μg/ml respectively. In antioxidant assays, Ir.Flv, Ir.Cf, and Ir.EtAc demonstrated highest radicals scavenging activities in DPPH and H2O2 assays which were comparable to ascorbic acid. Ir.Flv was found most potent with IC50 of 19 and 24 μg/ml against DPPH and H2O2 radicals respectively. Whereas antioxidant activates of plant samples against ABTS free radicals was moderate. Ir.Cf, Ir.EtAc and Ir.Cr showed high phenolic and flavonoid contents and concentrations of these compounds in different fractions correlated well to their antioxidant and anticholinestrase activities.

Conclusion

It may be inferred from the current investigations that the Ir.Sp, Ir.Flv and various fractions of I. rugosus are good sources of anticholinesterase and antioxidant compounds. Different fractions can be subjected to activity guided isolation of bioactive compounds effective in neurological disorders.  相似文献   
199.
Cell cultures are indispensable to develop and study efficacy of therapeutic agents, prior to their use in animal models. We have the unique ability to model well differentiated human airway epithelium and heart muscle cells. This could be an invaluable tool to study the deleterious effects of toxic inhaled chemicals, such as chlorine, that can normally interact with the cell surfaces, and form various byproducts upon reacting with water, and limiting their effects in submerged cultures. Our model using well differentiated human airway epithelial cell cultures at air-liqiuid interface circumvents this limitation as well as provides an opportunity to evaluate critical mechanisms of toxicity of potential poisonous inhaled chemicals. We describe enhanced loss of membrane integrity, caspase release and death upon toxic inhaled chemical such as chlorine exposure. In this article, we propose methods to model chlorine exposure in mammalian heart and airway epithelial cells in culture and simple tests to evaluate its effect on these cell types.  相似文献   
200.
Keratin intermediate filaments are heteropolymers of type I and type II polypeptides that constitute the bulk of the epithelial cytoskeleton. We microinjected seven keratin monoclonal antibodies into human epithelial cells, and two of them, only A45-B/B3 and LP3K, caused the formation of keratin aggregates. The keratin filaments in human epithelial cells were also disrupted by a monovalent A45-B/B3 Fab fragment, suggesting that the binding of the antibody, rather than cross-linking, collapses the filaments. Immunoblotting and ELISA experiments suggested that the antibody reacted weakly with recombinant K8 but did not react with recombinant K18 at all. However, the antibody reactivity increased substantially when a mixture of the two keratin polypeptides, either recombinant or derived from MCF-7, was used. The epitopes of 15 monoclonal antibodies recognizing human K8 were characterized by their reactivity with recombinant fragments of K8. Reactivity of antibody A45-B/B3 with fragments of K8 in the presence of K18 revealed that the antibody recognizes an epitope in the rod domain of K8, between residues 313 and 332, on the amino-terminal side of the stutter in helix 2B, which is involved in heterotypic association. The data suggest that this region of K8 undergoes a conformational change following interaction with the complementary K18 either to expose the epitope or to increase its affinity for the antibody. Taken together, the data highlight the role of this epitope in heterotypic association and in filament stabilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号