首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   1篇
  2023年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   3篇
  2012年   14篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
41.
The proteome of a salinity-tolerant Arachis hypogaea L. callus cell line was compared with its sensitive counterpart. Several low molecular weight proteins were detected by two-dimensional electrophoresis as being unique or significantly elevated in the tolerant line. The identities of several of these proteins were established as PR 10 proteins using tandem Mass Spectrometry and are shown to be phosphorylated on the basis of staining with the phosphorylation-specific stain, Pro-Q Diamond. Our results suggest that these differentially phosphorylated PR 10 proteins may play an important role in mediating salinity stress responses.  相似文献   
42.
During reproductive life, only a selected few ovarian follicles mature and ovulate, while the vast majority of follicles undergo a degenerative process called atresia. Recent studies have indicated that follicular atresia is mediated through apoptosis of follicular granulosa cells. The objectives of the present study were to determine the time of onset of apoptosis in granulosa cells of preovulatory follicles and to evaluate the consequences of gonadotropin withdrawal on mitogen-activated protein (MAP) kinase activities. Bonnet monkeys (Macaca radiata) undergoing controlled ovarian stimulation cycles were utilized for stimulation of multiple follicles, and granulosa cells were retrieved from preovulatory follicles at 24, 48, 72, and 96 h after stopping gonadotropin treatment. Serum and follicular fluid estradiol concentrations were highest at 24 h but declined precipitously (P < 0.05) to reach the lowest concentrations at 96 h; however, progesterone concentrations during this period did not increase, indicating the absence of luteinization. Quantitative analysis of genomic DNA by 3'-end labeling revealed the presence of low-molecular-weight fragments from 48 h onward, but by agarose gel electrophoresis, DNA laddering could be visualized only after 72 h. Messenger RNA expression for Bax, caspase-2, and caspase-3 increased with the onset of apoptosis. Immunoblot analysis of MAP kinases in lysates of granulosa cells (48-72 h) indicated increased (P < 0.05) levels of phosphorylated extracellular response kinase-1 and -2, Jun N-terminal kinase (JNK)-1 and -2, and p38. However, in vitro kinase assay data indicated that only phospho-JNK and -p38 activities were higher at 72 h compared to 24 h. These results demonstrate that granulosa cells of preovulatory follicles undergo apoptosis and that increased activities of phospho-JNK and -p38 are correlated with apoptosis in the primate.  相似文献   
43.
Cicer arietinum L. (chickpea) is the third most important food legume crop. We have generated the draft sequence of a desi‐type chickpea genome using next‐generation sequencing platforms, bacterial artificial chromosome end sequences and a genetic map. The 520‐Mb assembly covers 70% of the predicted 740‐Mb genome length, and more than 80% of the gene space. Genome analysis predicts the presence of 27 571 genes and 210 Mb as repeat elements. The gene expression analysis performed using 274 million RNA‐Seq reads identified several tissue‐specific and stress‐responsive genes. Although segmental duplicated blocks are observed, the chickpea genome does not exhibit any indication of recent whole‐genome duplication. Nucleotide diversity analysis provides an assessment of a narrow genetic base within the chickpea cultivars. We have developed a resource for genetic markers by comparing the genome sequences of one wild and three cultivated chickpea genotypes. The draft genome sequence is expected to facilitate genetic enhancement and breeding to develop improved chickpea varieties.  相似文献   
44.
Field pea (Pisum sativum L.) is an important cool season legume crop widely grown around the world. This research provides a basis for selection of pea germplasm across geographical regions in current and future breeding and genetic mapping efforts for pea improvement. Eleven novel genic markers were developed from pea expressed sequence tag (EST) sequences having significant similarity with gene calls from Medicago truncatula spanning at least one intron. In this study, 96 cultivars widely grown or used in breeding programs in the USA and Canada were analyzed for genetic diversity using 31 microsatellite or simple sequence repeat (SSR) and 11 novel EST-derived genic markers. The polymorphic information content varied from 0.01–0.56 among SSR markers and 0.04–0.43 among genic markers. The results showed that SSR and EST-derived genic markers displayed one or more highly reproducible, multi-allelic, and easy to score loci ranging from 200 to 700 bp in size. Genetic diversity was assessed through unweighted neighbor-joining method, and 96 varieties were grouped into three main clusters based on the dissimilarity matrix. Four subpopulations were determined through STRUCTURE analysis with no significant geographic separation of the subpopulations. The findings of the present study can be used to select diverse genotypes to be used as parents of crosses aimed for breeding improved pea cultivars.  相似文献   
45.
Polysialic acid is a developmentally regulated, anti-adhesive glycan that is added to the neural cell adhesion molecule, NCAM. Polysialylated NCAM is critical for brain development and plays roles in synaptic plasticity, axon guidance, and cell migration. The first fibronectin type III repeat of NCAM, FN1, is necessary for the polysialylation of N-glycans on the adjacent immunoglobulin domain. This repeat cannot be replaced by other fibronectin type III repeats. We solved the crystal structure of human NCAM FN1 and found that, in addition to a unique acidic surface patch, it possesses a novel alpha-helix that links strands 4 and 5 of its beta-sandwich structure. Replacement of the alpha-helix did not eliminate polysialyltransferase recognition, but shifted the addition of polysialic acid from the N-glycans modifying the adjacent immunoglobulin domain to O-glycans modifying FN1. Other experiments demonstrated that replacement of residues in the acidic surface patch alter the polysialylation of both N- and O-glycans in the same way, while the alpha-helix is only required for the polysialylation of N-glycans. Our data are consistent with a model in which the FN1 alpha-helix is involved in an Ig5-FN1 interaction that is critical for the correct positioning of Ig5 N-glycans for polysialylation.  相似文献   
46.
Cyclo-oxygenase-2 selective inhibitors are frequently used to manage osteoarthritis. We compared the analgesic efficacy of the novel cyclo-oxygenase-2 selective inhibitor lumiracoxib (Prexige) versus placebo and celecoxib in patients with knee osteoarthritis. This seven day, double-blind, placebo and active comparator controlled, parallel group study included 364 patients aged > or = 50 years with moderate-to-severe symptomatic knee osteoarthritis. Patients received lumiracoxib 400 mg/day (four times the recommended chronic dose in osteoarthritis; n = 144), placebo (n = 75), or celecoxib 200 mg twice daily (n = 145). The primary variable was actual pain intensity difference (100 mm visual-analogue scale) between baseline and the mean of three hour and five hour assessments after the first dose. Actual pain intensity difference, average and worst pain, pain relief and functional status (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC]) were measured over seven days. Patients also completed a global evaluation of treatment effect at study end or premature discontinuation. For the primary variable, the superiority of lumiracoxib versus placebo, the noninferiority of lumiracoxib versus celecoxib, and the superiority of lumiracoxib versus celecoxib were assessed by closed test procedure adjusting for multiplicity, thereby maintaining the overall 5% significance level. In addition, celecoxib was assessed versus placebo in a predefined exploratory manner to assess trial sensitivity. Lumiracoxib provided better analgesia than placebo 3-5 hours after the first dose (P = 0.004) through to study end. The estimated difference between lumiracoxib and celecoxib 3-5 hours after the first dose was not significant (P = 0.185). Celecoxib was not significantly different from placebo in this analysis (P = 0.069). At study end 13.9% of lumiracoxib-treated patients reported complete pain relief versus 5.5% and 5.3% of celecoxib and placebo recipients, respectively. WOMAC total and subscales improved for both active treatments versus placebo except for difficulty in performing daily activities, for which celecoxib just failed to achieve significance (P = 0.056). In the patient's global evaluation of treatment effect, 58.1% of patients receiving lumiracoxib rated treatment as 'excellent' or 'good', versus 48.6% of celecoxib and 25.3% of placebo patients. Lumiracoxib was well tolerated. The overall incidence of adverse events was similar across treatment groups.  相似文献   
47.
Recently there has been an increased interest in the effects of paracrine signaling between groups of cells, particularly in the context of better understanding how stem cells contribute to tissue repair. Most current 3D co-culture methods lack the ability to effectively separate two cell populations after the culture period, which is important for simultaneously analyzing the reciprocal effects of each cell type on the other. Here, we detail the development of a 3D hydrogel co-culture system that allows us to culture different cell types for up to 7 days and subsequently separate and isolate the different cell populations using enzyme-sensitive glues. Separable 3D co-culture laminates were prepared by laminating PEG-based hydrogels with enzyme-degradable hydrogel adhesives. Encapsulated cell populations exhibited good segregation with well-defined interfaces. Furthermore, constructs can be separated on-demand upon addition of the appropriate enzyme, while cell viability remains high throughout the culture period, even after laminate separation. This platform offers great potential for a variety of basic cell signaling studies as the incorporation of an enzyme-sensitive adhesive interface allows the on-demand separation of individual cell populations for immediate analysis or further culture to examine persistence of co-culture effects and paracrine signaling on cell populations. See accompanying commentary by Danielle R. Bogdanowicz and Helen H. Lu DOI: 10.1002/biot.201300054  相似文献   
48.
Immobilization depicts a propitious route to optimize the catalytic performances, efficient recovery, minimizing autocatalysis, and also augment the stabilities of enzymes, particularly in unnatural environments. In this opinion, supramolecules and multimolecular frameworks have captivated immense attention to achieve profound controllable interactions between enzyme molecules and well-defined natural or synthetic architectures to yield protein bioconjugates with high accessibility for substrate binding and enhanced enantioselectivities. This scholastic review emphasizes the possibilities of associating multimolecular complexes with biological entities via several types of interactions, namely covalent interactions, host–guest complexation, π π ${\rm{\pi }}-{\rm{\pi }}$ interactions, intra/inter hydrogen bondings, electrostatic interactions, and so forth offers remarkable applications for the modulations of enzymes. The potential synergies between artificial supramolecular structures and biological systems are the primary concern of this pedagogical review. The majority of the research primarily focused on the dynamic biomolecule-responsive supramolecular assemblages and multimolecular architectures as ideal platforms for the recognition and modulation of proteins and cells. Embracing sustainable green demeanors of enzyme immobilizations in a quest to reinforce site-selectivity, catalytic efficiency, and structural integrality of enzymes are the contemporary requirements of the biotechnological sectors that instigate the development of novel biocatalytic systems.  相似文献   
49.
50.
The uptake, recycling, and function of ascorbic acid was evaluated in cultured U-937 monocytic cells. Dehydroascorbic acid, the two-electron oxidized form of the vitamin, was taken up on the glucose transporter and reduced to ascorbate to a much greater extent than ascorbate itself was accumulated by the cells. In contrast to dehydroascorbic acid, ascorbate entered the cells on a sodium- and energy-dependent transporter. Intracellular ascorbate enhanced the transfer of electrons across the cell membrane to extracellular ferricyanide. Rates of ascorbate-dependent ferricyanide reduction were saturable, fivefold greater than basal rates, and facilitated by intracellular recycling of ascorbate. Whereas reduction of dehydroascorbic acid concentrations above 400 microM consumed reduced glutathione (GSH), even severe GSH depletion by 1-chloro-2,4-dinitrobenzene was without effect on the ability of the cells to reduce concentrations of dehydroascorbic acid likely to be in the physiologic range (< 200 microM). Dialyzed cytosolic fractions from U-937 cells reduced dehydroascorbic acid to ascorbate in an NADPH-dependent manner that appeared due to thioredoxin reductase. However, thioredoxin reductase did not account for the bulk of dehydroascorbic acid reduction, since its activity was also decreased by treatment of intact cells with 1-chloro-2,4-dinitrobenzene. Thus, U-937 cells loaded with dehydroascorbic acid accumulate ascorbate against a concentration gradient via a mechanism that is not dependent on GSH or NADPH, and this ascorbate can serve as the major source of electrons for transfer across the plasma membrane to extracellular ferricyanide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号