首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   19篇
  471篇
  2024年   1篇
  2023年   4篇
  2022年   15篇
  2021年   20篇
  2020年   9篇
  2019年   17篇
  2018年   10篇
  2017年   11篇
  2016年   18篇
  2015年   22篇
  2014年   33篇
  2013年   41篇
  2012年   42篇
  2011年   33篇
  2010年   17篇
  2009年   20篇
  2008年   24篇
  2007年   23篇
  2006年   24篇
  2005年   18篇
  2004年   18篇
  2003年   8篇
  2002年   13篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有471条查询结果,搜索用时 0 毫秒
101.
Human pancreatic cholesterol esterase (hCEase) is one of the lipases found to involve in the digestion of large and broad spectrum of substrates including triglycerides, phospholipids, cholesteryl esters, etc. The presence of bile salts is found to be very important for the activation of hCEase. Molecular dynamic simulations were performed for the apoform and bile salt complexed form of hCEase using the co-ordinates of two bile salts from bovine CEase. The stability of the systems throughout the simulation time was checked and two representative structures from the highly populated regions were selected using cluster analysis. These two representative structures were used in pharmacophore model generation. The generated pharmacophore models were validated and used in database screening. The screened hits were refined for their drug-like properties based on Lipinski's rule of five and ADMET properties. The drug-like compounds were further refined by molecular docking simulation using GOLD program based on the GOLD fitness score, mode of binding, and molecular interactions with the active site amino acids. Finally, three hits of novel scaffolds were selected as potential leads to be used in novel and potent hCEase inhibitor design. The stability of binding modes and molecular interactions of these final hits were re-assured by molecular dynamics simulations.  相似文献   
102.
Hypoxia is a key parameter that controls tumor angiogenesis and malignant progression by regulating the expression of several oncogenic molecules. The nonreceptor protein-tyrosine kinases Syk and Lck play crucial roles in the signaling mechanism of various cellular processes. The enhanced expression of Syk in normal breast tissue but not in malignant breast carcinoma has prompted us to investigate its potential role in mammary carcinogenesis. Accordingly, we hypothesized that hypoxia/reoxygenation (H/R) may play an important role in regulating Syk activation, and Lck may be involved in this process. In this study, we have demonstrated that H/R differentially regulates Syk phosphorylation and its subsequent interaction and cross-talk with Lck in MCF-7 cells. Moreover, Syk and Lck play differential roles in regulating Sp1 activation and expressions of melanoma cell adhesion molecule (MelCAM), urokinase-type plasminogen activator (uPA), matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor (VEGF) in response to H/R. Overexpression of wild type Syk inhibited the H/R-induced uPA, MMP-9, and VEGF expression but up-regulated MelCAM expression. Our data also indicated that MelCAM acts as a tumor suppressor by negatively regulating H/R-induced uPA secretion and MMP-9 activation. The mice xenograft study showed the cross-talk between Syk and Lck regulated H/R-induced breast tumor progression and further correlated with the expressions of MelCAM, uPA, MMP-9, and VEGF. Human clinical specimen analysis supported the in vitro and in vivo findings. To our knowledge, this is first report that the cross-talk between Syk and Lck regulates H/R-induced breast cancer progression and further suggests that Syk may act as potential therapeutic target for the treatment of breast cancer.  相似文献   
103.
Biology of vascular endothelial growth factors   总被引:12,自引:0,他引:12  
Roy H  Bhardwaj S  Ylä-Herttuala S 《FEBS letters》2006,580(12):2879-2887
Angiogenesis is the process by which new blood vessels are formed from existing vessels. The vascular endothelial growth factors (VEGFs) are considered as key molecules in the process of angiogenesis. The VEGF family currently includes VEGF-A, -B, -C, -D, -E, -F and placenta growth factor (PlGF), that bind in a distinct pattern to three structurally related receptor tyrosine kinases, denoted VEGF receptor-1, -2, and -3. VEGF-C and VEGF-D also play a crucial role in the process of lymphangiogenesis. Here, we review the biology of VEGFs and evaluate their role in pathological angiogenesis and lymphangiogenesis.  相似文献   
104.
The present study explores the unexploited sorption properties of the plant Moringa oleifera Lam. for decontamination of Cd at laboratory scale. Sorption studies using standard practices were carried out in batch experiments as functions of biomass dosage, contact time, metal concentrations, particle size and pH. Percentage sorption in each case was computed on the basis of Cd estimation using a planar NaI (TI) detector coupled to a 4K MCA (Canberra Accuspec Card with PC-AT 386). The adsorption data accurately in a Freundlich isotherm. Sorption studies resulted in the standardization of optimum conditions for removal of Cd (85.10%) as follows: biomass dosage (4.0 g), metal concentration (25 microg/ml), contact time (40 min) and volume of the test solution (200 ml) at pH 6.5. Fourier transform infrared (FTIR) spectrometry highlighted amino acid-Cd interactions responsible for sorption phenomenon. The findings open up new avenues in the removal of toxic metals by shelled Moringa oleifera seeds (SMOS) from water bodies as low cost, domestic and environmentally friendly safe technology.  相似文献   
105.
Therapy induced rewiring of signalling networks often lead to acquirement of platinum-resistance, thereby necessitating the use of non-platinum agents as second-line treatment particularly for epithelial ovarian cancer (EOC). A prior subject-specific assessment can guide the choice of optimal non-platinum agent/s and possible targeted therapeutic/s. Assessment of protein-protein interactions are superior to simple cytotoxicity assays to determine therapeutic efficacy and associated molecular responses. Utilizing improved PIP3-AKT and ERK1/2 activation Bioluminescence Resonance Energy Transfer (BRET) sensors, we report chemotherapy-induced ERK1/2 activation predominantly in cisplatin-paclitaxel resistant EOC cells and increased activation of both ERK1/2 and AKT in malignant ascites derived cancer cells from platinum-resistant patients but not from treatment-naive or platinum-sensitive relapse patients. Further, majority of the non-platinum drugs except irinotecan increased ERK1/2 activation in platinum-taxol resistant cells as observed by live-cell BRET assessment which were associated with p90RSK1/2 and BAD activation along with upregulation of multidrug transporter gene ABCC1 and cell survival genes like cyclin D1 and Bcl2. Interestingly, only irinotecan was able to sensitize these resistant cells. Altogether, this first report of BRET based sensing of molecular pathway activations in platinum resistant cell lines and patient's derived cancer cells highlight the clinical potential of BRET sensors in management of therapy resistant cancer.  相似文献   
106.
107.
Transforming growth factor-beta (TGF-beta) induces epithelial-mesenchymal transition (EMT) of epithelial cells in both normal embryonic development and certain pathological contexts. Here, we show that TGF-beta induced-EMT in human lung cancer cells (A549; adenocarcinoma cells) mediates tumor cell migration and invasion phenotypes. To gain insights into molecular events during EMT, we employed a global stable isotope labeled profiling strategy using iTRAQ reagents, followed by 2DLC-MS/MS, which identified a total of 51 differentially expressed proteins during EMT; 29 proteins were up-regulated and 22 proteins were down-regulated. Down-regulated proteins were predominantly enzymes involved in regulating nutrient or drug metabolism. The majority of the TGF-beta-induced proteins (such as tropomyosins, filamin A, B, & C, integrin-beta1, heat shock protein27, transglutaminase2, cofilin, 14-3-3 zeta, ezrin-radixin-moesin) are involved in the regulation of cell migration, adhesion and invasion, suggesting the acquisition of a invasive phenotype.  相似文献   
108.

Background  

Recently there has been a lot of interest in identifying modules at the level of genetic and metabolic networks of organisms, as well as in identifying single genes and reactions that are essential for the organism. A goal of computational and systems biology is to go beyond identification towards an explanation of specific modules and essential genes and reactions in terms of specific structural or evolutionary constraints.  相似文献   
109.
110.
The effect of oral administration of sodium orthovanadate (SOV) and Trigonella foenum graecum seed powder (TSP), a medicinal plant used extensively in Asia, on the mitochondrial metabolism in the alloxan diabetic rats has been investigated. Rats were injected with alloxan monohydrate (20 mg/100 g body wt) or vehicle (Na-acetate buffer), the former were treated with either 2 IU insulin i.p., 0.6 mg/ml SOV ad libitum, 5% TSP ad libitum, and a combination of 0.2% SOV and 5% TSP ad libitum for 21 days. Selected rate-limiting enzymes of the tricarboxylic acid cycle, hydrogen shuttle system, ketone body metabolism, amino acid metabolism and urea cycle were measured in the mitochondrial and cytosolic fractions of liver, kidney and brain tissues of the experimental rats. Majority of the mitochondrial enzymes in the tissues of the diabetic rats had significantly higher activities compared to the control rats. Similarly, the activities of mitochondrial and cytosolic aminotransferases and arginase were significantly higher in liver and kidney tissues of the diabetic rats. The separate administrations of SOV and TSP to diabetic rats were able to restore the activities of these enzymes to control values. The lower dose of SOV (0.2%) administered in combination with TSP to diabetic rats lowered the enzyme activities more significantly than when given in a higher dose (0.6%) separately. This is the first report of the effective combined action of oral SOV and TSP in ameliorating the altered mitochondrial enzyme activities during experimental type-1 diabetes. Our novel combined oral administration of SOV and TSP to diabetic rats thus conclusively proves as a possible method to minimize potential vanadate toxicity without compromising its positive effects in the therapy of experimental type-1 diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号